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Chapitre 1 — Nombres complexes et
algebre

I — Ensemble des nombres complexes

a) Définitions et premiéres propriétés

Propriétés admises : Il existe un ensemble, noté € des nombres complexes qui posséde les
propriétés suivantes :

¢ C contient ’ensemble R des réels (on note RcC)

* Les quatre opérations des nombres réels se prolongent aux nombres complexes et les
régles de calculs sont les mémes.

Il existe un nombre complexe noté i tel que °’=—1.

* Tout nombre complexe z s’écrit de maniére unique z=x+iy avec Xx€ER et yER .

Définitions : I’écriture z=x+iy avec X€ER et yER est appelée forme algébrique du
nombre complexe z . x estla partie réelle de z , notée ‘.R(z) , et y estla partie imaginaire de
z,notée I(z). zER<J(z)=0 et z estun imaginaire pur < R(z)=0.

Exemples : Pour z=7—6i,ona R(z)=7 et 3(z)=—6. i estun imaginaire pur.

Propriété : Deux nombres complexes sont égaux si et seulement si ils ont méme partie réelle et
méme partie imaginaire. C’est une conséquence de ’unicité de cette forme.

b) Calculs dans I’ensemble des nombres complexes

D’apreés les propriétés de €, on calcule comme dans R, en tenant compte du fait que i°=—1.

En particulier, les identités remarquables se prolongenta C .

Exemples :
o 11+2i—(1+i)=10+i
* (5+2i)(6—3i)=30—15i+12i—6i°=30—3i—6%(—1)=36—23i
* (4-iV3)’=47—2x4xiV3+(iV3)=16—8iV3+i’x3=16—8i\3+(—1)x3=13-8i+3

N i =365 il =i2X18><iZ(iz)inZ(—l)inZIXiIi
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Propriété (4™ identité remarquable) : Pour tous complexes a et b,ona
(a+ib)(a—ib)=a’+b’. Cette identité s’utilise généralement avec a et b réels.

Preuve : (a+ib)(a—ib)=a’—(ib)’'=d’~i’b’=a’—(—1)b’=a’+b".

Exemple : Dans © 4a’*+49 peut se factoriser ainsi : 4a°+49=(2a)’+7°=(2a+71i)(2a-71i).

IT — Conjugué d’un nombre complexe

a) Conjugaison

Définition : Soit z un nombre complexe de forme algébrique x+iy avec X€ER et yER.

Le conjugué de z, noté z, est le nombre complexe x—iy.
Exemples : 2—5i=2+5i ; (1—+/5)i=(—1+5)i.

b) Propriétés

7=z z+42=2R(z) z—2=2i3(z)
zER=z=z z est un imaginaire pur 27=(R(z))+(3(2))?
PI=—1Z (4°™ identité remarquable)

Preuves : I suffit de remplacer z par sa forme algébrique x+iy avec x€R et y€R.

c) Division
L’inverse d’un nombre complexe z#0 est le nombre complexe Z tel que zXZ=1.
1 ' o . z 1
On le note P Pour tous nombres complexes z et z'#0, on définit le quotient 7=Z X— ; pour

Z r
déterminer sa forme algébrique, on multiplie numérateur et dénominateur par z'.

4-2i
Exemple : On cherche la forme algébrique de z= 3+l.l
(4—2i)(3—1) _12—4i—6i+2i° _12—4i—6i—2 _10—10i
= = = = =1-—i =
(3+1)(3-1) EOE 0 70 i donc R(z)=1 et

S(z)=-1.
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d) Conjugaison et opérations

Propriétés : Pour tous nombres complexes z et z' et tout entier naturel n=1,ona:

= T T =7 “n_—n IR TN
z+z'=z+z 27'=212 7"=7 1)_1 z\_z
z| z 'R

avec z#0 avec z'#0

Preuve des deux premieéres propriétés : Soient x, y, x' et ¥' des nombres réels tels que
z=x+iy et z'=x"+iy".

z+z' =x+iy+x'+iy '=x+x'+i(y+y)=x+x'—i(y+y')=x—iy+x'—iy'=z+z'.

zz'=(x+iy)(x'+iy')Zxx'+ixy'+iyx'+i2yy'=xx'—yy'+i(xy'+yx') donc

zz'=xx'—yy'—i(xy'+yx').Deplus,ona:

zz'=(x—iy)(x'—iy')=xx'—ixy'—iyx'+i’yy'=xx'—yy'—i(xy'+yx') donc zz'=zz".
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Chapitre 2 — Divisibilite
Définitions : On note IN 1'ensemble des entiers naturels : N={0;1;2;3;4;...}
On note Z I'ensemble des entiers relatifs : Z={...;—4;—3;—2;—1;0; 1;2;3;4;...}

Notation : Pour tous réels a et b avec a<b onnote [a;b] ’ensemble des entiers relatifs
compris au sens large entre a et b.Onadonc [a;b]=ZN[a;b].

Exemple : [-3;V2]=-3;-2;-1;0;1].

I — Divisibilité des entiers relatifs

a) Multiples et diviseurs d'un nombre entier relatif

Définition : Soient a€Z et b€Z . On dit que a divise b (ou que b est un multiple de a)
s'il existe kEZ tel que b=ka.Onnote alb, et afb dans le cas contraire.

Remarques :
* Pourtout aeZ, 0Xa=0 donc tout entier relatif a divise 0.

* Tout entier relatif non nul b posséde un nombre fini de diviseurs : en effet, ses diviseurs
sont en valeur absolue inférieurs ou égaux a |b| , les diviseurs appartiennent a
[=bl;...;=1;1;...;/bl}=[—b;b]\ 0] . b adoncauplus 2|b diviseurs.

Exemple : L'ensemble des diviseurs dans Z de 24 sont :
[—24;-12;-8;-6;-4;—3;—-2;—1;1;2;3;4;6;8;12;24 | .

b) Propriétés de la division dans I'ensemble des entiers relatifs

Dans cette partie, a, b et c sont trois entiers relatifs non nuls.
Propriété : Si a|b et alc, alors pour tout u€Z et véZ, alub+vc.

Preuve : Si a|b, alors il existe k€Z tel que b=ka..
Si alc, alors il existe k '€Z tel que c=k'a.
On en déduit que ub+vc=uka+vk'a=a(uk+vk') donc alub+vc puisque uk+vk'€Z .

Exercice résolu : Soit n€Z tel que n|n+8 . Déterminons les valeurs possibles de n .
e n|n et n|n+8 donc n|ln+8—n=n|8 .
+ Réciproquement, si n|8, comme n|n, alors n|n+8.
Conclusion : n|n+8<n|8 . Les valeurs possibles pour n sont donc —8;—4;—-2;—1;1;2;4;8.

Propriété (transitivité) : Si a|b et b|c alors alc.

Preuve : Si a|b, alors il existe k€Z tel que b=ka . Si b|c, alors il existe k '€Z tel que
c=k'b.Onadonc c=k'ka donc a|c puisque kk'€Z .
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IT — Division euclidienne d’un entier relatif par un entier
naturel non nul

Théoréme et définition : Soient a€Z et b€EIN avec b#0.

1 existe un unique couple (q,r) d'entiers relatifs tels que a=bq+r avec 0<r<b.
On dit que a est le dividende, b le diviseur, q le quotient et r le reste dans la division
euclidienne de a par b.

Exemples : La division euclidienne de 27 par 4 donne 27=4X6+3. Celle de —27 par 4 donne
—27=4X(-7)+1.

Remarques :

Le mot « diviseur » n'a pas le méme sens ici que dans la partie I.

Il y a de multiples écritures de a sous la forme bq+r : par exemple, pour a=103 et
b=13,0na 103=13X7+12=13X6+25=13X5+38, etc.

Mais seule la premiere égalité est la relation de division euclidienne, car 0<12<13.
Lorsqu'on réalise une division « a la main », on réalise une division euclidienne.

Preuve du théoreme :

Existencede q et r :

o 1% cas: a estun multiple de b . Alors il existe un entier relatif q tel a=bq.

o 2%cas: a n’est pas un multiple de b . Il existe des multiples de b inférieurs strictement
a a et d’autres supérieurs strictement a a .
On peut donc écrire bq<a<b(q+1) ot b(q+1) est le plus petit multiple de b
supérieur strictement a a .
Finalement, pour tout a€ Z , il existe un entier relatif q tel que bq<a<b(q+1).
En posant r=a—bq, on obtient a=bq+r et 0<r<b.

Unicité du couple (q,r) :

Supposons qu'il existe deux couples (q,r) et (q',r’) tels que :
a=bq+r=bq'+r’' (1)avec 0<r<b et 0<r'<b (2).

De (1), on déduit que b(q—q')=r'—r avec q'—q entier, donc r'—r est un multiple de
b . De (2), on déduit que —b<r'—r<b . Le seul multiple de b strictement compris entre
—b et b est0,donc r'—r=0, soit r'=r . Par (1), on en déduit que q'=q . Donc le
couple (q,r) est unique.
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IIT — Congruences dans I’ensemble des entiers relatifs

Propriété et définition : Soit ¢ un entier naturel non nul. Deux entiers relatifs a et b ont
méme reste dans la division euclidienne par c si et seulement si a—b est un multiple de c .
Si c'est le cas, on dit que a et b sont congrus modulo ¢ (ou que a est congrua b modulo
c).On note a=b(c) ou a=b(modc) ou a=b[c] ou a=b[mod c].

Exemples : Si on s'intéresse aux congruences modulo 4, on a :
5=1[4], 6=2[4], 7=3[4], 8=0[4], 9=1[4], ...

Preuve de la propriété : On écrit les relations de division euclidienne par ¢ : a=cq+r, 0<r<c et
b=cq'+r', 0<r'<c.
* Supposons que r=r", alors a—b=c(q—q') avec q—q' entier, donc a—b estun
multiple de c.
+ Réciproquement, si a—b est multiple de c, alors c|a—b et comme c|c(q—q"), alors par
combinaison linéaire, c[r—r'.Comme —c<r—r'<c,il fautque r—r'=0,soit r=r"'.

Exercice résolu : Démontrons que 214=25[9] : 214—25=189=9x21 donc 214=25[9].

Remarques : Soient a un entier relatif et ¢ un entier naturel non nul.
e a estunmultiple de ¢ sietseulementsi a=0[c].
* Les nombres congrus a a modulo ¢ sont les nombres de la forme a+kc avec k€Z .
e r estlereste de la division euclidienne de a par ¢ <a=r[c] et 0<r<c.

Propriété (transitivité) : Soient a, a' et a’'’ des entiers relatifs et ¢ un entier naturel non
nul.
Si a=a'[c] et a'=a''[c], alors a=a''[c].

Propriétés (congruences et opérations) : Soient a, b, a', b' des entiers relatifs et ¢ un
entier naturel non nul. Si a=b[c] et a’'=b’[c], alors :
s a+a'=b+b’[c], a—a'=b—b'[c] et aa'=bb’'[].

« a"=b"[c] pour tout neN",

Preuve : Par hypothése, il existe k€Z et k'€Z telsque a=b+kc et a'=b"+k'c.
+ a+a'=b+b'+(k+k')c avec k+k' entier, donc a+a'=b+b'[c].
 aa'=bb'+(bk'+b'k+kk'c)c avec bk'+b'k+kk'c entier, donc aa'=bb'[c].
* Pour la derniére relation, c'est une récurrence sur la relation précédente.

Remarques : Les regles opératoires sont les mémes qu'avec une égalité classique, cependant :
+ Iln'y a pas de division, ou de « simplification » : 22=18[4] mais 11 et 9 ne sont pas
congrus modulo 4.
«  Pas de propriété hasardeuse avec les puissances : 5=1[4], mais 2°=32=0[4] et 2'=2[4]
donc 2° et 2' ne sont pas congrus modulo 4.

Exercice résolu : Cherchons le reste de la division euclidienne de 23*

2°=4, 2°=8 et 2°=16 donc 2°=4[5], 2’°=3[5] et 2'=1[5].
342=4x85+2 donc 2**=2"""=(2")"%2%[5] donc 2**=1%*x4[5] soit 2**=4]5].
Comme 0<4<5, 2** apour reste 4 dans la division euclidienne par 5.

par 5.
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Chapitre 3 — Equations polynomiales
dans ’ensemble des nombres complexes

I — Equations du second degré dans I’ensemble des
nombres complexes

a) Racines carrées d’un nombre réel dans I’ensemble des nombres complexes

Qe sie J ) - . - . 2
Définition : @ désigne un nombre réel. Les solutions dans € de équation z°=a sont
appelées racines carrées de a dans C.

Propriété : Tout nombre réel non nul admet deux racines carrées dans C.
e Si a>0, ce sont les nombres réels Ja et —v/a.

* Si a<0, ce sont les nombres imaginaires purs iv—a et —iv—a.

Preuve .
+ Si a>0, z’=a=(z—Va)(z+Va)=0 . En résolvant I’équation-produit, on a la conclusion.

« Sia<0, ’=ae=z’—i*(—a)=0o(z—iV—a)(z+iV—a)=0 . En résolvant I’équation-
produit, on a la conclusion.

Exemples : Les racines carrées dans C :
o de7sont \7 et —7.
e de —7 sont iN7 et —iV7.

b) Racines complexes d’un polynome du second degré a coefficients réels

Propriété : Soit P(z)=az’+bz+c un polynéme du second degré avec acR”, bER et
c€R de discriminant A=b’—4ac . Alors, dans €, P(z) admet :

b
* Si A=0, une unique racine réelle : ZO:_Z'
—b+vA —b—+VA
e Si A>0,deuxracinesréelles: z;=—/— et Z,=————
2a 2a
) ) ) i _—b+iv—-A _—b—iv—A
* Si A<0, deux racines complexes conjuguées ZI_T et ZZ—T .
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‘A
——— et on factorise par a :

: i P(z)=a|z+—
Preuve : On part de la forme canonique P(z)=a|z 2al " 4a
b\’ o b \2
P(z)=al|z+-— —Az . Chercher les racines revient donc & résoudre dans C |z+-— :AZ.
2a) 4a 2a] 4a
b |’ b b
. i = +—| =0 +—=0 =——
Si A=0, |z 7a oz 7q =1z 2a
5 N - _
. A b VA b_ VA _—b++VA
. t— | = oz+—=252 +—=— YR o= —— "
Si A>0, |2 a 402@2 2a 2a ™ z 2a 2a z 2¢ M
_—b—vJA
2a
b P_ A b _iv=A b __iv=A —b+iv=A
e Sj +— | =2 — = +—=— =
St A<0, |2 2a| 44d° a2 ou ZTh g 2a 2a ou
_—b—-iv=A
2a )

Remarque : En remarquant que A=0 peut étre vu comme un cas particulier des deux autres cas, on
aalors z,=2,=z,, et P(z)=a(z—2z)(z—2z,).

IT — Polynomes
Dans cette partie, 1 est un entier naturel non nul et on adoptera la convention algébrique 0°=1.

Définition : Un polynome non nul P a coefficients réels de la variable complexe z est défini
par une expression de la forme P(z)=a,,z"+ an_lz"_1+...+azzz+alz+ a, avec pour tout
ke[0;n] a,€R tels que a,#0 . L’entier naturel n est le degré du polynome.

Remarque : On peut étendre cette définition et considérer les polynomes a coefficients complexes
de la variable complexe z . Les résultats qui suivent sont énoncés dans ce cadre.

Définition : z,EC est une racine d’un polynéme P si et seulement si P(zo) =0.

Exemple: P définisur C© par P=2z’+z°+41z—21 est un polynéme de degré 3 a coefficients

1 1
réels. 3 est une racine de P car P 3 =0,
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Propriété : Soit P un polynéme a coefficients réels. Alors, si Z,€C est une racine de P, alors
nécessairement Z, est une racine de P.

n
-1 2 k A
"'+..+a,z°+a,z+a,= Y, a,z" un polyndme tel que pour tout
k=0

ke|0;n] a,€R. On a donc pour tout k€|[0' n| a,=a,. Soit z,E€C une racine de P. On a donc

Preuve : Soit P(z)=a,z"+a, ,z

P(z,)=0. On a alors P(Zz,) Z:akz0 Zaz Z z0 Zakzo 0=0 donc Z, est une racine de
= k=0 k=0

P.

Propriété : Pour tous a€C et z€C, z"—a"=(z—a)(z" '+az"*+a’z" +...4a" *z+a"""),

: k—1_n—k
ce qui se note z"—a"=(z—a) Y, a" 2" ",
k=1

Exemple : Pour tout z€C ,ona z°—32=7"-2"=(2-2)(z*+22°+47°+82+16).

Preuve : On développe R(z)=(z—a)(z" '+az"+ad’z" >+...+a" “z+d"') :

-1 2 -2 -2 2 -1 -1 2 -2 3 -3 -1
R(z)=z"+az" '+d’z" *+.. +a" ’+d" 'z—a ' —d’ " =d* " - —d - d".

En simplifiant, il reste R(z)=2z"-a".

Théoréme : Soit a€C . Si P est un polynome a coefficients réels de la variable complexe de
degré n>1 dont a est une racine, alors on peut factoriser P(z) par (z—a) , C’est-a-dire
qu’il existe un polynome Q de degré n—1 tel que pour tout z€C on ait

P(z)=(z—a)Q(z).

Exemple : On considére le polynéme P(z)=z’+z°+z+1. P(i)=0 donc il existe un polynéme Q
de degré 2 tel que pour tout z€C , P(z)=(z—i)Q(z).

Mieux, comme P est a coefficients réels et que i en est une racine, on en déduit que i=—1i en est
également une racine.

On en déduit que P peut se factoriser par (z—i)(z+ i)=2°+1 et donc qu’il existe un polynéme de
degré 1 R(z) tel que P(z)=(z"+1)R(z).
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Preuve : P étant un polynome a coefficients réels de la variable complexe de degré n, il existe des
, _ S k
réels a, ; a, ;... a, avec a,#0 tels que pour tout zEC, P(z)=Y a,z".
k=0
n n n
a est une racine de P donc P(a)=0=P(z)=P(z)-P(a)=) a,z*~D a,d=) a(~d").
k=0 k=0 k=0
En utilisant la propriété précédente, on a :
n n
P(z)=) a(z—a)(z "+az" "+ . +d" 7 z+d )=(z—a)D ] a (' +a T+ +d" T z+d ).
k=0 k=0
k=2 k-2

Onpose Q(z)=Y a,(z" "+az+...+a" *z+a"") . Comme a,#0, Q estde degré n—1 etona
k=0

le résultat souhaité.

Théoréme : Un polynome de degré n=>1 admet au plus n racines.

Preuve par récurrence : Soient n€N" et HR(n) I’hypothése le polyndme P de degré n a au plus
n racines.

Initialisation : Pour n=1, le polynome est défini par P(z)=az+b avec aeC’, beC.
b
Il admet exactement une racine, Z :_E donc HR(1) est vraie.
Hérédité : On suppose que pour un entier k=1, HR(k) est vraie, c’est-a-dire que tout polyndme
de degré k admet au plus k racines. On considére un polynéme P de degré k+1 .

+ Si P n’admet pas de racine, alors HR(k+1) est vraie puisque 0<k+1.

* Sinon, soit a€C une racine de P . D’apres le théoreme précédent, il existe un polynome
Q tel que, pour tout z€C, P(z)=(z—a)Q(z). Q estde degré k.
Alors, d’aprés HR(k), Q aauplus k racines. Par conséquent, P qui admet
éventuellement la racine supplémentaire a (qui peut étre déja racine de Q) admet au plus
k+1 racines. Donc HR(k+1) est vraie.

Conclusion : Tout polynome de degré n=1 admet au plus n racines.
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Chapitre 4 — PGCD et applications

I — PGCD de deux entiers relatifs

a) Définition et propriétés de réduction

Exemple : Les diviseurs de 12 sont 1 ;2 ; 3 ;4 ; 6 ; 12 et leurs opposés.
Les diviseurs de —9 sont 1 ; 3 ; 9 et leurs opposés.
Les diviseurs communs a — 9 et 12 sont donc 1 ; 3 et leurs opposés (— 1 et — 3).

Remarques :
e Pourtout a€Z, les diviseurs communs a 0 et a sont les diviseurs de a .

*  Pourtout a€Z , les diviseurs communs a 1 et a sont—1 et 1.

Propriété et définition : Soient a et b deux entiers relatifs non tous les deux nuls. L'ensemble
des diviseurs communs a a et b admet un plus grand élément ; on I'appelle Plus Grand
Commun Diviseur de a et b et onle note PGCD(a;bh).

Exemples : PGCD(—9;12)=3 ; PGCD(—1;45)=1 ; PGCD(0;—457)=457 .

Preuve : Supposons que a#0 . L'ensemble des diviseurs communs de a et b est non vide puisqu'il
contient 1 et — 1. Cet ensemble est fini car il ne contient que des entiers compris entre —a et a.
Donc il admet un plus grand élément qui est le plus grand des diviseurs communsa a et b.

Remarques : Soient a et b deux entiers relatifs non tous les deux nuls.
+ PGCD(a;b)eN.
*+ PGCD(a;b)=PGCD(b;a)=PGCD(|d|;|b|) ; on se raméne en général au cas ot a et b
sont positifs.
+ PGCD(1;b)=1 et PGCD(0;b)=[b| (avecici b#0).

Définition : a et b sont premiers entre eux si et seulement si PGCD(a;b)=1.
Exemple : PGCD(47;15):1 donc 47 et 15 sont premiers entre eux.

Propriété : Soit D(a 5 b) I'ensemble des diviseurs communs a deux entiers relatifs a et b.
Alors D(a;b)=D(a—kXb;b) pour tout k€Z .

Preuve : Pour tout k€Z :
e Sid divise a et b, alors d divise a et a—kb,donc d divise a—kb et b.
e Sid divise a—kb et b, alors d divise (a—kb)+kb c'est-a-dire a, donc d divise a
et b.
Conclusion : D(a;b)=D(a—kb;b) pourtout kEZ .

Exemple : Avec les notations précédentes, on a :
D(63;75)=D(63;75—63)=D(63;12)=D(63—5%x12;12)=D(3;12)={-3;—1;1; 3} .
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Propriété de réduction du PGCD : Soient a et b deux entiers relatifs non tous les deux nuls.
+  PGCD(a;b)=PGCD(a—kb;b) pour tout kEZ .
e Si 0<b<a, PGCD(a ;b) :PGCD(r;b) ou r est le reste de la division euclidienne de
a par b.
* Si b est un diviseur positif de a, PGCD (a;b)=b.

Preuve :
* C'est une conséquence immeédiate de la propriété précédente.
* Si O<b<a, on applique I'égalité précédente avec k=q, quotient de la division euclidienne
de a par b.
e Si bla avec b>0, r=0 donc PGCD(a;b)=PGCD(0;b)=b.

b) L 'algorithme d'Euclide
Cet algorithme permet de déterminer le PGCD de deux entiers naturels non tous les deux nuls, en
utilisant la relation :

Si 0<b<a, PGCD(a;b)=PGCD(r;b) ou r estle reste de la division euclidienne de a par b .

Exemple : Cherchons PGCD(240;36) .

a = b X q + r
240 = 36 X 6 + 24
36 = 24 X 1 + 12
24 = 12 X 2 + 0

On déduit de ces relations que :
PGCD(240;36 )= PGCD(24;36)=PGCD(12;24)=PGCD(12;0)=12 .

Propriété (algorithme d'Euclide) :

Soient a et b deux entiers tels que 0<b<a.
L'algorithme suivant permet de calculer en un nombre fini d'étapes PGCD(a;b).
* Calculer le reste r de la division euclidienne de a par b.
* Tant que r#0, remplacer a par b et b par r.
* Calculer le reste r de la division euclidienne de a par b.
* Fin Tant que.
* Retourner b.

Preuve : Ecrivons les divisions successives : a=b q,+r, avec 0<r,<b .

» Si r,=0, on s'arréte a cette premiére étape.

e Sir,#*0, onremplace a par b et b par r, : b=r;q,+r, avec 0<r,<r,.

e Si r;#0, onremplace b par ry et Iy par 'y : I'y=r,q,+r, avec 0<r,<r,

e Si r,#0, onremplace Iy par Iy et 'y par I', : I')/=r,q;+ry avec 0s<r;<r,.
On construit ainsi une liste strictement décroissante 'y, 'y, I',, ... Oril n'y a qu'un nombre fini
d'entiers entre 'y et 0. Cette liste est donc finie donc il existe k€N tel que r,#0 et r,,=0.
Comme T,,;=0, I'algorithme s'arréte. Il comporte bien un nombre fini d'étapes.
On adonc PGCD(a;b)=PGCD(r,;r,,,)=PGCD(r;0)=r, (dernier reste non nul).
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Propriété : Soient a et b deux entiers relatifs non tous les deux nuls.
Les diviseurs communs a a et b sont les diviseurs de leur PGCD.

Exemple : Déterminons les diviseurs communs a — 12 458 et 3 272.
Cherchons PGCD(12458;3272) :
e 12458=3272X3+2642
e 3272=2642%1+630
o 2642=630Xx4+122
e 630=122X5+20
o  122=20X6+2
e 20=2X10+0
On a donc PGCD(—12458;3272)=2 donc les diviseurs communs d — 12 458 et 3 272 sont :
-2;-1;1;2.

Preuve : Deux nombres entiers opposés ayant les mémes diviseurs, on peut supposer 0<b<a.
* Si b=0,alors a#0. D(a,b)=D(a) et PGCD(a;b)=a donc la propriété est vraie.
* Si b#0 et bla, D(a;b)=D(b) avec b=PGCD(a;b) donc la propriété est encore vraie.
e Si b#0 et bfa, avec les notations de la preuve de 1'algorithme d'Euclide et la propriété on
a: D(a;b)=D(ry;b)=D(ry;r,)=...=D(r;;r,,;)=D(r,;0)=D(r,) avec
r.=PGCD(a;b).

c) Autres propriétés du PGCD de deux entiers

Propriété d'homogénéité : Soient a et b deux entiers relatifs non tous les deux nuls.
Pour tout AeN’, PGCD(Aa;\b)=APGCD(a;b).

Preuve : Si a ou b estnul, ousi alb, le résultat est trivial.

Sinon, on suppose 0<b<a . La recherche de PGCD(ha;Ab) alaide de l'algorithme d'Euclide
conduit a écrire des égalités qui sont celles de la recherche de PGCD(a;b) multipliées par A .
Pour le dernier reste non nul, on aura donc PGCD(Aa;Ab)=APGCD(a;b).

Exemple : PGCD(150;100)=50 PGCD(3;2)=50x1=50.
Propriété caractéristique : Soient a et b deux entiers relatifs non tous les deux nuls et d un

a=da’
b=db'

entier naturel. d=PGCD(a;b)< avec a’' et b' premiers entre eux.

Preuve : Si d =PGCD(a;b),ilexiste a' et b’ telsque a=da' et b=db'.

Alors, PGCD(a;b)=PGCD(da';db')=d PGCD(a';b') par homogénéité, puisque d€IN".
Comme PGCD(a;b)=d , on en déduit que PGCD(a';b')=1 etdonc que a' et b' sont
premiers entre eux.

Réciproquement, si a=da' et b=db' avec a' et b' premiers entre eux et d €N, alors d #0

car a et b sont non tous les deux nuls, donc par homogénéité,
PGCD(a;b)=d PGCD(a';b')=d x1=d .

Exemple : 90=9X10 et 40=4X10 avec 9 et 4 premiers entre eux donc PGCD(90;40)=10.
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II — Théoreme de Bézout

Propriétés : Soient a et b deux entiers relatifs non tous les deux nuls et d=PGCD(a;b).
1. Il existe u et v entiers relatifs tels que au+bv=d : c'est la relation de Bézout.
2. L'ensemble des entiers au+bv (avec u€Z , ve€Z ) est I'ensemble des multiples de d .

Remarque : Il n'y a pas unicité du couple (u;v) tel que au+bv=d.

Preuve :

1. On utilise les notations de la démonstration de 1'algorithme d'Euclide.

De a=bq,+r, onobtient ry=a—bq,=auy+bv, avec u,=1 et v,=—q, qui sont des entiers.

De b=r,q,+r,, on obtient r;=b—q,r,=b—(auy+bv,)q,=au,+bv, avec u,=—u,q, et
v,=1-v,q, entiers.

Pas-a-pas, on exprime chaque reste comme combinaison linéaire entiére de a et b jusqu'a 1y,
c'est-a-dire d .

2. Soit n=au+bv avec u et v appartenanta Z .Comme d divise a et b, d divise n . Toute
combinaison linéaire de a et b est un multiple de d .

Réciproquement, si n est un multiple de d , il existe k€Z tel que n=kd . Or, il existe u et v
entiers tels que d =au+bv donc n=(ku)a+(kv)b .1l existe donc deux entiers u' et v' tels que
n=au'+bv'.Tout multiple de d est une combinaison linéaire entiére de a et b.

Exemple : Pour a=231,et b=165,0na :
e 231=165+66
 165=66X2+33
e 66=33X2+0
Donc PGCD(231;165)=33 . En utilisant les relations précédentes, on a :
e 33=165—66X2
+ 66=231-165
Donc 33=165—(231—165)X2=165—-2X231+165x2=165X3+231%X(—2) .
On remarque que I'on a aussi : 165X17+231X(—12)=33 .

Théoréme de Bézout : Soient a et b deux entiers relatifs.
a et b sont premiers entre eux si et seulement si il existe deux entiers relatifs u et v tels
que au+bv=1.

Preuve : Si a et b sont premiers entre eux, d =1 et d'apres la proposition précédente, il existe
UeZ et ve€Z telsque au+bv=1.

Réciproquement, s'il existe u€EZ et vEZ tels que au+bv=1, alors un diviseur commun a a et
b divise 1, donc c'est soit 1 soit — 1 donc PGCD(a;b)=1.

Exemples :
s a=4 et b=—9 sont premiers entre eux car 4X(—2)+9x1=1.

* Deux entiers consécutifs sont toujours premiers entre eux, car pour n€Z. ,
nx(—1)+(n+1)x1=1.
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IIT — Théoreme de Gauss

Théoréme de Gauss : Soient a, b et c trois entiers relatifs non nuls.
Si a divise bc etsi a est premier avec b, alors a divise c.

Exemple : 5 divise 75=3X25,5 et 3 sont premiers entre eux donc 5 divise 25.

Contre-exemple : Pour a=12, b=6 et c=10, a n'est premier ni avec b, ni avec c .
a divise bc=60 , mais a ne diviseni b ni c.
L'hypothése a premier avec b est donc capitale.

Preuve : a divise bc donc il existe k€Z tel que bc=ka . Comme a et b sont premiers entre
eux, il existe d’apres le théoreme de Bézout des entiers relatifs u et v tels que au+bv=1.

En multipliant par ¢ cette relation, on obtient : acu+bcv=c, soit acu+kav=c soit
a(cu+kv)=c.Comme cu+kveZ, a divise c.

Corollaire du théoréme de Gauss : Si deux nombres premiers entre eux a et b divisent un
entier c, alors ab divise c.

Exemple : 5 divise 100, 4 divise 100. Comme 5 et 4 sont premiers entre eux, 5X4=20 divise 100.

Preuve : a|c donc il existe k€Z tel que c=ka .Comme b est premier avec a et que blka,
alors d'aprés le théoréme de Gauss il existe IEZ tel que k=Ib.Onadonc c=Iba,donc abc.
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Chapitre 5 — Nombres premiers

I — Nombres premiers

Définition : Un nombre entier naturel est premier si et seulement s'il posséde exactement deux
diviseurs positifs : 1 et lui-méme.

Exemples :
» 2 est premier car ses seuls diviseurs positifs sont 1 et 2.

* 0O n'est pas premier car il possede une infinité de diviseurs positifs.
* 1 n'est pas premier car il a un seul diviseur positif : 1.

Remarques :
* Un entier supérieur a 2 qui n'est pas premier est dit composé.

* Si p estun nombre premier et n un entier, ou bien p divise n, oubien p et n sont
premiers entre eux, puisqu'ils n'ont que 1 comme diviseur positif commun.

Théoréme :
* Tout entier naturel supérieur ou égal a 2 admet un diviseur premier.
* Tout entier naturel n_non premier supérieur a 2 admet un diviseur premier p
inférieur ou égal a in.

Preuve : Soit n€IN, n=2 .Si n est premier, il admet un diviseur premier : lui-méme.

Si n n'est pas premier, il admet un diviseur positif autre que lui-méme et 1.

On consideére alors E , ensemble des diviseurs positif (autres que n et 1) de n.

D'apres la remarque précédente, E n'est pas vide. Il admet donc un plus petit élément, que 1'on note
p.

Supposons que p ne soit pas premier. Il existerait un diviseur positif d de p. d serait aussi
diviseur de n.Donc d serait un élément de E , ce qui contredit le fait que p soit le plus petit
élément de E . C'est absurde. Donc p est premier.

p est premier et divise n donc il existe g€IN tel que n=pq avec 1<q<n.

Donc q estun diviseur de n (autre que n et 1) donc q€E et p<q puisque p est le plus petit
élément de E .

Onadonc p’<pg= p’<n=p<in.

Propriété (test de primalité) : Soit n un entier naturel supérieur ou égal a 2. Si n n'est
divisible par aucun des nombres premiers inférieurs ou égaux a Jn,alors n est premier.

Preuve : Si n n'est pas premier, il admet un diviseur premier inférieur ou égala  n .
Le test de primalité est la contraposée de cette proposition.
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Exemples : |
» Déterminons si 4559 est premier : + 4559~67,52 .

On teste la divisibilité de 4559 par les nombres premiers inférieurs ou égaux a 67.
On remarque que 4559=47X97 donc 4559 n'est pas premier.

s Déterminons si 4561 est premier : \ 4561~67,54 .
On teste la divisibilité de 4561 par les nombres premiers inférieurs ou égaux a 67.
Aucune division ne fonctionne, donc 4561 est premier.

Théoréme : 11 existe une infinité de nombres premiers.

Preuve par l'absurde : Supposons que I'ensemble des nombres premiers est fini.
Il n'existerait qu'un nombre n de nombres premiers : P, P, P3, ..., Pn.

n
Considérons le nombre N =p,;X p,Xp;X...X p +1 | ce qui se note NZH p;+1.

i=1
Comme N= pl( P, XpyX... X p,,)+1 : 1 est le reste de la division euclidienne de N par p;, donc
N n'est pas divisible par p; .
De méme, en effectuant les divisions euclidiennes par les autres nombres premiers p,, ..., P,,on
détermine que N n'est divisible par aucun nombre premier.
Donc N serait premier. Donc N serait I'un des nombres p,, ..., P,, ce qui est faux. C'est
absurde.
Conclusion : L'ensemble des nombres premiers est infini.

IT — Décomposition en facteurs premiers

Exemple : On peut écrire 800=8X4x25=2"%5" ou 2 et 5 sont des nombres premiers.

a) Existence et unicité d'une décomposition

Théoréme : Tout entier n=2 se décompose en un produit de nombres premiers. Cette
décomposition est unique a l'ordre des facteurs pres.

On peut donc écrire n= PPy Pyt ou Py » P2y ..., Py sont des nombres premiers deux a
deux distincts et o,;, O, , ..., o, sont des entiers naturels non nuls.

Preuve :
* Existence : Soit n=2 un entier. On sait d'aprées le premier théoréme du I qu'il admet un

diviseur premier P,.Onadonc n=p;n; avec 1sn,<n,
Si n;=1, alors n=p, et la propriété est démontrée.
Sinon, alors N, posséde un diviseur premier P, et on a donc n=p, p,n, ou 1<n,<n,,
On continue ainsi tant que le quotient 1n; est supérieur a 1.
On forme ainsi une liste d'entiers 1n,, Nn,,... strictement décroissante et minorée par 1.
Elle est donc finie, c'est-a-dire qu'a partir d'un certain rang m ona n,=1 et donc
n=p,p,..pP, oules p; sontdes nombres premiers non nécessairement distincts.
En regroupant les facteurs égaux on a la factorisation voulue.
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* Unicité : On suppose qu'un certain nombre premier p apparait avec I'exposant o.=>1 dans
une décomposition, et I'exposant =0 dans une autre ( =0 si le facteur n’apparait pas
dans cette décomposition).

On aalors n=p“a=p"b, ot a et b sont des produits de nombres premiers distincts de
p.

Si a>B, p“"a=b,donc p divise b, ce qui contredit le fait que p ne fait pas partie des

facteurs de b .

Si a<f, a=p" “b, ce qui contredit le fait que p ne fait pas partie des facteurs de a .

Donc a=f . Ce qui garantit l'unicité de la factorisation.

k
Remarque : On peut noter n :H ;.

i=1

b) Diviseurs d'un entier naturel supérieur ou égal a 2

or, s P« A 3 oy , .s . ' .
Propriété : Si p, p,’--- P, est la décomposition en facteurs premiers d'un entier naturel n,
les diviseurs de n sont de la forme p{pgz... pik ou 0<f,<a,,..., 0<f,<0q,.

. B, B, Br
Preuve : Les nombres entiers de la forme p; p[;...p'kk ou 0<B,<a,, ..., 0<B,<a, sont des

diviseurs de n . En effet, on peut écrire n=( p[‘f p[;z... pEk)X py e p;"fﬁ'ﬂ.. pZ’”ﬁk ou les exposants
o, —f sont positifs ou nuls.

Réciproquement, soit d un diviseur de n.Si p’ divise d (avec p premier), alors p” divise n.
L'unicité de la décomposition en facteurs premiers de n implique que le nombre p” doit figurer
dans cette décomposition, et donc que p estl'un des p; et que 0<p<a,.

d est donc de la forme souhaitée.

Exemple : 24=2"%3 donc 24 a pour diviseurs les entiers 2°%3” on 0<a<3 (donc a=0,1,2
ou3)et 0<B<1 (donc B=0 ou 1). On peut donc lister tous les diviseurs de 24 :

« 2°%x3%=1
* 2°%x3'=3
* 2'x3°=2
* 2'x3'=6
s 2°x3'=4
s 2°x3'=12
+ 2°x3°=8
* 2’x3'=24

, P - P % oy , o . ' .
Conséquence 1:Si p; p,’..- P, estla décomposition en facteurs premiers d'un entier naturel
k

n, le nombre de diviseurs de n dans IN est (1+a1)(1+a2)...(1+ak)=H(1+(x,.) .
i=1
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Preuve : Un diviseur de n est de la forme p;' pgz...pik ou 0<p,<0a,..., 0B, <a,.
Pour chaque p; avec 1<i<k, l'exposant peut prendre 1+0; valeurs possibles.

Le nombre total de diviseurs est alors (1+a, )(1+a,)...(1+0,) , puisque l'unicité de la
décomposition en produit de facteurs premiers assure que ces diviseurs sont tous différents.

Conséquence 2 : Soient a et b deux entiers naturels supérieurs ou égaux a 2. Le PGCD de a
et b est égal au produit des facteurs premiers communs aux décompositions de a et b,
chacun d'eux étant affecté du plus petit exposant avec lequel il figure dans a et b.

Exemple : 31500=2"x3*x5’X7 et 2733750=2x3"x5".
On déduit de la conséquence 1 que 31500 posséde 3X3X4x2=72 diviseurs dans IN | et 2733750
en possede 2X8X5=80.

On déduit de la conséquence 2 que PGCD (31500 ;2733750 )=2x3°x5=2250 .

IIT — Petit théoreme de Fermat

Petit théoréeme de Fermat : Soit p un nombre premier et a un entier naturel non divisible
par p.Alors a’ “'—1 est divisible par P, cC’est-a-dire que a’ '=1[p].

Preuve : (1) p n’apparait pas la décomposition en facteurs premiers de 1, 2, ...., p—1.

p—1
Donc p n’apparait pas dans la décomposition en facteurs premiers de H k=(p—1)!.Onen
k=1

déduit que p et (p—1)! sont premiers entre eux.

(2) Si ke[1;p—1], alors le reste ', de la division euclidienne de ka par p est non nul ; en
effet, si p divisait ka, comme p et k sont premiers entre eux, d’apreés le théoréme de Gauss, p
diviserait a . Or ceci est impossible car par hypothese a n’est pas divisible par p.

(3)Si k'e[1;p—1] estdistinct de k (par exemple k<k'), alors les restes T, et I'y. sont
distincts. En effet, si r,=r,., alors p diviserait k 'a—ka:a(k '—k) .Comme k'—k€|1;p—1|
cela signifierait que ry._, serait nul, ce qui contredit le point (2).

(4) Ainsi, les p—1 restes 'y, Iy, ..., I',_; sont tous distincts et appartiennent a [1; p—1].Onen

p—1
déduit que {rl;rz;n-;rp_l} est une permutation de [1; p—1], donc Hr,;(p—l)!.
k=1

On en déduit que ﬁ (ka)Eﬁ r.ple(p—1)ta®'=(p—1)![p]. Donc p|((p—1)!(ap_l—1)) . Or

k=1
p et ( p— 1)! sont premiers entre eux donc d’aprés le théoréme de Gauss, p divise ¢’ '—1.

Conséquence : si P est premier et a€N, alors a’=a[ p].

Preuve : Si @ est divisible par P, alors a(a’'—1)=a’—a est également divisible par P donc
a’=a[ p]. Sinon, d’aprés le petit théoréme de Fermat, a” '=1[p]=a"=a|p].
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Chapitre 6 — Nombres complexes,
géometrie et formule du binome

Dans ce chapitre, le plan est muni d’un repére orthonormé (O;ii,V) direct, c’est-a-dire que

(ﬁ;\*/):%+2k T avec k€Z . On appelle ce plan le plan complexe.

I — Géométrie et nombres complexes

a) Affixe d’un point ou d’un vecteur

Définitions : A tout nombre complexe z de forme algébrique x+iy (avec x€R et yER)
on associe le point M ( X; y) du plan complexe. On dit que M est le point image de z et que

—

OM est le vecteur image de z ; on dit que z est I’dffixe du point M et du vecteur OM .

Remarques:

* Tout point M est’unique point image d’un complexe z, et réciproquement tout complexe
z est I’unique affixe d’un point M .

* Pourindiquer que z est’affixe de M, onnote M(z).
* Les nombres réels sont les affixes des points de 1’axe des abscisses, appelé axe des réels.

* Les nombres imaginaires purs sont les affixes des points de 1’axe des ordonnées appelé axe
des imaginaires purs.

Propriétés :
* Deux vecteurs sont égaux si et seulement si leurs affixes sont égales.

* Si 1 et Vv ont pour affixes respectives z et z', alors pour tout AER P’affixe du
vecteur U+AV est z+Az'.

* Pour tous points A et B d’affixes respectives Z, et Zy, I’affixe de AB est Z 5 Z,.
* Pour tous points A et B d’affixes respectives Z, et Z;, I’affixe de I, milieu de

+
[AB], est z,= Z*‘ZZB

Remarque : Ces résultats se prouvent comme en classe de seconde, a 1’aide de la relation de Chasles
notamment.
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Interprétation géométrique du conjugué : Pour tout zEC , les points M(z) et M'(z) sont
symétriques I’un de I’autre par rapport a I’axe des abscisses.

En effet, si z=x+iy avec x€R et y€R ,alors z=x—iy donc M et M' ont la méme abscisse
et des ordonnées opposées.

T e 13”£~]
1
1
|
I )
|
. I
U I
@] T I
1
|
1
1
1
1
|
1
Y o —— o — - - M'(z)

b) Module d’un nombre complexe

Définition : Soit zEC de forme algébrique x+iy avec X€ER et yER.

Le module de Z est le nombre réel positif noté |z| défini par |z]=+ x*+y’.

Interprétation géométrique du module : Dans le plan complexe, si M a pour affixe z, alors
|z|=0M .

Remarques :
¢ Si x€IR, alors le module de x est la valeur absolue de x .

e |zZl=00M=0=M=0<2=0.

Propriétés : Pour tout z€C,

@) |-z2l=l| @) |zl=lz| @) zz=|7

Preuves : (1) et (2) découlent de la définition, et (3) de la quatriéme identité remarquable.
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Propriétés : Pour tous complexes z, z' et tout entier naturel non nul n,ona:

) |zz'|=lllz @) |2"|=]2|" 1|_1 z|_l2d
si z'#0 si z'#0
Preuves :

o« (V) |zzf=zz'xzz'=22'22'=222'2'=|z['|z'=(|z||z'|)*. Or lzz'| et lzllz'| sontdes
réels positifs, donc on en déduit que |zz'|=|zl|z'] .

* (2) se démontre par récurrence en utilisant (1).

1
* (3) et (4) se démontrent en utilisant (1) et le fait que pour tout z'#0, Z'Xz—=1 .

r

Définition : On note IU I’ensemble des nombres complexes de module 1. Il s’agit dans le plan
complexe du cercle de centre O et de rayon 1.

mJ

M (z)

Wl E =

Propriétés : Pour tous complexes z et z' de ’ensemble IU ,ona:

(1) zz'€IU @ %EIU 3) %EIU

Preuves : Comme z€IU et z'€UI ,ona |z|=|z'|=1. ce qui entraine :
* |zz'|=|zl|lz'|=1x1=1 donc zz'€UI ; on adonc (1).

1l_h_1
1

r

V4

1
=1 donc ;EUI ; on a donc (2).

1
* Enappliquant (1)a z et P (qui appartient a UI d’apres (2)) on obtient (3).
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¢) Arguments d’un nombre complexe

Définition : Soit z un nombre complexe non nul de point image M dans le plan complexe, et

N est le point du cercle trigonométrique tel que ON :OL OM . On appelle argument de z

et on note arg(z) tout nombre réel 8 dont N est I’image sur le cercle trigonométrique.

M(2)

Remarques : Un nombre complexe non nul a une infinité d’arguments : si & est1’un d’eux, les
autres s’écrivent #+k21 avec kEZ . Onnote arg(z)=6 ou arg(z)=62n] ce qui se lit :
«modulo 271 ». On dit aussi qu’une mesure de 1’angle orienté (Gi;OM) est 6.

Propriétés : Pour tout complexe non nul z :

arg(—z)=arg(z)+n[2n] arg(z)=—arg(z)[2n]
z€Rearg(z)=0[n]

. . . T[
z est un 1maginaire pur < arg (Z ) = E[ ud

M(z)

Les angles sont mesurés depuis (O ;1)

0+
/0

M'(-2)

M'(z)
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IT — Formes trigonométrique et exponentielle d’un
complexe non nul

a) Forme trigonomeétrique d’un complexe non nul

Soit zEC™ dont O est un argument. On considére le point M image de z et N le point tel que

— ] —=
ON= H OM . N appartient donc au cercle trigonométrique et est I’image de &, donc N a pour
coordonnées cartésiennes (cos(6);sin(6)) et Iaffixe de N est zy=cos(8)+isin(6).

Comme OM=|z|ON , on en déduit que z=lz|(cos(&)+isin(8)).

Définition : Soit z€C" . I’écriture z=|z| (cos( H)+i sin (0)) ou arg(Z)= O[2n] est appelée
une forme trigonométrique de z .

Propriétés :
* Deux nombres complexes non nuls sont égaux si et seulement si ils ont méme module et
méme argument modulo 27 .

« Si z=r(cos(a)+isin(a)) avec r>0,alors |z|=r et arg(z)=ea[2n].

« Si z=r(cos(a)+isin(a)) avec r<0,alors |z|=—r et arg(z)=a+n[2n].

b) Relation fonctionnelle

La fonction f définie sur R par f(6)=cos(6)+isin(6) est dérivable sur R comme somme de
fonctions dérivables sur IR . Pour tout €R | f'(6)=cos’(6)+isin'(6)<=

f'(6)=—sin(O)+icos(6)=i’sin(6)+icos(O)=i(isin(O)+cos(6))=if(0)=f'(6)=if(6).
f est donc solution de I’équation différentielle y '=iy , donc pour tout #€R ona:
f(8)=ke'’ avec keC .

Comme f(0)=cos(0)+isin(0)=1 et ke™°=ke’=k, on en déduit que k=1.

On a dong, pour tout #€ER , f(g)=e.

Notation : Pour tout #€R , on peut noter cos(8)+isin(#)=e'’. Cette notation est due a
Euler en 1748. Ainsi, e'’ désigne le nombre complexe de module 1 dont un argument est 6.

Exemples :

=1 e"=—1 iz i 1 .43
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c) Forme exponentielle

Tout nombre complexe z#0 admet une forme trigonométrique z=|z|(cos(6)+isin(#)) avec
f=arg(z)[2n] . On peut donc écrire z=lzle™.

Définition : Une forme exponentielle d’un nombre complexe z#0 dont un argument est &,
est écriture z=|z|e"’.

LT
i—=

Exemple : Le nombre complexe z=—2e ° n’est pas une forme exponentielle car —2<0 .

Pour déterminer la forme exponentielle, on peut utiliser le fait que e"=—1.

el i7n
=2e 6,

i

LT
. 11—
Onadonc z=D2e¢'"e °=2¢

d) Propriétés de la forme exponentielle

Propriétés : Pour tous réels & et &' et tout entier naturel n,ona:
o le'l=1 et arg(ei‘g):H[Zn]
o e=e"o0=0'[2n]

. ig\n inf
Formule de Moivre : (e' "=’

io
. i ig__ i ' e _ ie-¢
ea><ea=e(0+0) et igv_el( )
o 1 _ira_ g
io -
e
Remarques :

* Ces propriétés traduisent les propriétés de 1’argument.

* La formule de Moivre peut s’écrire (Cos( 6)+isin( 0))"= cos(n @) +isin(n @)

i —if ig —if
Lo . e
Propriétés (formules d’Euler) : Pour tout réel 6, cos(6)=

Preuve : e'’=cos(6)+isin(6) et e "’=cos(—@)+isin (—H)=cos(8)—isin(6) .
i0 —if ig —if

€ +2e =cos(6) et e’—e’=2isin(H) =S

Ainsi, e'’+e '’=2cos ()= T
i
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e) Formules d’addition et de duplication, propriétés de I’argument

Théoréme (formules d'addition) : Pour tous réels a et b,ona:

(1) cos(a+b)=cos(a)cos(b)—sin(a)sin(b) |(2) cos(a—b)=cos(a)cos(b)+sin(a)sin(b)

(3) sin(a+b)=sin(a)cos(b)+sin(b)cos(a) |(4) sin(a—b)=sin(a)cos(b)—sin(b)cos(a)

ia _ib i(a+b

Preuves : On part de la relation fonctionnelle ee®=¢/“** . On a donc avec les formes
trigonométriques : (cos(a)+isin(a))(cos(b)+isin(b))=(cos(a+b)+isin(a+b))=

cos(a)cos (b)+icos(a)sin(b)+isin(a)cos(b)+i’sin (a)sin(b)=(cos(a+b)+isin(a+b)) =

cos (a)cos (b)—sin(a)sin(b)+i(cos(a)sin(b)+sin (a)cos(b))=(cos(a+b)+isin(a+b)) .

En égalisant les parties réelles, on obtient (1) et en égalisant les parties imaginaires on obtient (3).
En remplagant b par —b dans (1) et (3) et en utilisant la parité de la fonction cosinus et I’imparité
de la fonction sinus, on obtient (2) et (4). On peut également utilisation la relation fonctionnelle

ia _—ib__ _i(a—b)
e e =e .

Conséquence (formules de duplication) : Pour tout réel a,ona:

cos(2a)=cosz(a)—sin2(a) cos(20)=2cosz(a)—1

cos(2a)=1-2sin’(a) sin(2 a)=2sin(a) cos(a)

Preuve : il suffit de prendre b=a dans les relations (1) et (3), et d'utiliser le fait que
cos’(a)+sin’(a)=1.

Propriétés : Pour tous complexes non nuls z et z' et tout entier naturel n,ona:

(1) arg(zz')=arg(z)+arg(z')[2n] (2) arg(z")=narg(z)[2n]

(3) arg(%):—arg(z [2n] 7)) arg(%):arg(z)—arg(z')[Zn]

Preuves : En posant z=|z|(cos(&)+isin(#)) et z'=|z'|(cos(6")+isin(8')), on a donc :
e zz'=|zl|lz"|(cos()+isin(6))(cos (') +isin(O')) =
zz'=|zz"|(cos(8)cos(6')—sin(G)sin(#")+i(sin(8)cos(O")+sin(6')cos(6))) . En utilisant
les formules d’addition ona: zz'=|zz'|(cos( 6+ 8" )+isin(6+6')) . Donc
arg(zz')=arg(z)+arg(z')[2n] ce qui fournit (1).
* Avec une récurrence immédiate, (1) permet d’obtenir (2).
=arg(1)=0 et arg

o arg fournissent (3).

z'x% —arg(z')+arg 1

1
Z'X— —
z z

* (1) et (3) fournissent (4).
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IIT — Racines n-iemes de ’unité

Définition : Une racine n-iéme de I’unité est une solution dans € de I’équation z"=1.

. . N ., - . .4
Exemple : 1 est une racine quatriéme de I’unité, puisque i =1 .

.2km

1
Propriété : Les racines n-iémes de I’unité s’écrivent e " avec k€[0;n—1].

Preuve : On pose z=re'’ avec r>0 et #ER . Ona donc :
r=1

n _in@

n__
S=lerd=1e| =l o

né=0[2n] 6’=knﬂ avec keZ

Or, tout entier relatif k peut s’écrire k=nq+s avec s, q dans Z tels que 0<s<n.

n n n

Ainsi,

.28

j2sm
L’équation z"=1 posséde donc n solutions : les nombres complexes e " avec s€[0;n—1].

IV — Formule du binome de Newton dans I’ensemble des
nombres complexes

a) Les coefficients binomiaux

Définition : Soient k et n deux entiers naturels tels que k<n.Le nombre de combinaisons

g . , | n
de k éléments parmi n est noté (k) .

est notamment le nombre de chemins

, 5 - . n
Remarque : [’ordre des éléments n’intervient pas. ( K

comportant k succes pour n réalisations indépendantes de la méme épreuve de Bernoulli.

Propriétés : On peut démontrer que, pour tous entiers n et k tels que k<n,ona:

e[ e T

k+ 1
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Conséquence : Pour tout entier n on a (Z):l et ( n ):n .

b) Le triangle de Pascal

Le triangle de Pascal est un tableau qui donne les valeurs des coefficients binomiaux

n
k
Comme 0<k<n, il ala forme d'un triangle. Il peut bien siir étre prolongé pour n=4, n=5, ... et
pour k=4, k=5, ...

n=0 (8

=

sl AN
ARG

Les remarques et propriétés précédentes permettent de calculer les coefficients :

Pour n€IN, g =1 donc dans la colonne « k=0 » toutes les valeurs valent 1.

0
O b

n

e Pour n€IN, =1 donc dans la diagonale , ... toutes les valeurs valent 1.

1

n n n+1 n+
. <k<n- + = 'obti
Pour 0<k<n-—1, K Kt 1 Kt 1 donc la valeur de la case ( Kt 1 s'obtient en
ajoutant la case du dessus k-’: 1| avec la case a coté de cette derniere (Z ) .
* Pour n€IN et k€IN avec k<n, Z = ik donc chaque ligne peut se lire dans les deux

sens.

On obtient donc :

k=0 k=1 k=2 k=3
n=0 1
n= 1 1
n=2 1 2 1
n=3 1 3 3 1
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c) La formule du binome de Newton

Propriété : Pour tous a€C et bEC , et pour tout n€N" ona:

(a+b)n=an+ n an—1b+ n an—2b2+ n an—3b3+“-+ n albn—1+bn.
1 2 3 n—1

. o P — n —k 1.k
Ceci se note de maniére condensée : (a+ b)"— Z (k) a"b lorsque a et b sont non nuls.

Exemple : Soit z€C . On a alors :

(=1 =2+ 4| x(- 1)+ ZZX(—1)2+(§)zlx(—1)3+(—1)4:z4—423+622—4z+1.

Preuve par récurrence : Soient a€C, beC, et n€IN .

n

Soit P(n) I’hypothése (a+b)'=),

k=0

—k 1.k
Mg p*

Initialisation : (a+b) =a+b et g'+b'=a+b donc P(1) est vraie.

Hérédité : On suppose que pour un entier naturel h>1 P(h) est vraie :

- (h

(a+b)'=>] L a

““b" . On multiplie chaque membre par (a+b) :
k=0

(a+b)(a+b)h:(a+b)(i a4

h h—1

h 1__ h—k k h—kq k+1 h+1

(a+b)"*'=a"" Z b+bz a" b b
k=1 k=0

On pose t=h—1 dans la premiére somme et t=h dans la seconde :

h h—1
“p +bh+1®ah+1+z h ah—k+1bk+z h
k=1 k=0 \k

k

h_
(a+b)h+1=ah+1+

[a

-1

ht[+ Z

) h—tbt+1+bh+1<:>

=0 t"‘l t=0
h—1
(a+b)"'=a""+ holylh a"'b"'+b"™"  Or, comme 0<t<h—1, ho ()=l donc
=0 [\t+1] |t t+1) \t t+1
h—1
(a+b)h+1:ah”+z ]Z:i a" ‘b +b™"  Onpose k=t+1 :
h
(a+b)"'= Z h;l a™' *b*+b™" donc P(h+1) est vraie.
Conclusion : Pour tout n€N, (a+b)'=) Z a" b~
k=0
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Chapitre 7 — Calcul matriciel et
applications

I — Nature d'une matrice et vocabulaire

a) Définitions

Définition : Soient m et n deux entiers naturels non nuls.
Une matrice de dimension mXn est un tableau rectangulaire formé de m lignes et n
colonnes de nombres complexes.

Remarque : Quand on parle de dimension (ou taille, ou format) mXn, on ne calcule pas le produit !

2 2 3,5
Exemple : 0 —1 8 | est une matrice de 2 lignes et 3 colonnes, donc de taille 2X3 .
3

Définitions :
* Une matrice ligne est une matrice formée d'une seule ligne.
* Une matrice colonne est une matrice formée d'une seule colonne.
* Une matrice carrée d'ordre n est une matrice nXn.

1 2 3 5
5
.o . 7 —5 0 0
Exemples : [2 6 1] est une matrice ligne, 1 | estune matrice colonne, 4 ” 3 6
> 2 0 0 1

est une matrice carrée d'ordre 4.

b) Ecriture générale d'une matrice

Une matrice A de taille mXn (avec meIN" et n€IN") peut s'écrire sous cette forme :

a;, a,, a,
A=
amfl,l amfl,Z amfl,n
Clm’1 am’z am,n

. . ‘. s I<ism

Les nombres a;; (notés parfois a; ; pour éviter les ambiguités) avec 1< j<n s'appellent les
= X

coefficients de la matrice A . On peut alors noter A= (a,»j)lg,-gm’lgjgn .

Le coefficient a;; est donc le nombre placé ala i “™ ligne et la j *™ colonne.

Définition : Deux matrices seront égales si et seulement si elles ont le méme format et ont les
mémes coefficients aux mémes places.
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c) Matrices particuliéres

Définition : Dans une matrice carrée d'ordre n, les coefficients a,,, a,,, ..., da,, forment la
diagonale principale de l1a matrice.

Définition : Une matrice carrée est diagonale si et seulement si ses coefficients qui ne sont pas
sur la diagonale principale sont tous nuls.

5 0 0
Exemple : |0 —5 0| estune matrice diagonale.
0 0 1

Définition : L.a matrice unité d'ordre n (ou matrice identité d'ordre n ), notée I,, estla
matrice carrée d'ordre n contenant uniquement des 1 sur sa diagonale principale et des 0
ailleurs.

Exemple : 12:((1) ?) .

Définition : I.a matrice nulle d'ordre n, notée O, , est la matrice carrée d'ordre n dont tous
les coefficients sont nuls.

IT — Opérations sur les matrices

a) Addition et multiplication par un complexe

Définition : Si A=(a, j) et B=(b, j) sont deux matrices de méme taille mxn , leur somme
A+B est définie par A+B=(a;;+b,;)i<icn 1<j<n -

On ne peut donc ajouter que des matrices de méme taille, et pour cela on ajoute les
coefficients situés a la méme place.

{25

Définition : Soit A= (a ; ,-)K,-gmylg j<n une matrice et AEC . La matrice A A est la matrice

(?»a,. j)1<,-<m,1< j<n - Multiplier une matrice par un complexe revient a multiplier tous les
coefficients par ce complexe.

2 4
—1 10

2+ 3 4—4
—1+6 10+5

5 15

15 0

Exemple : (

Remarques :
* On ade facon évidente A+B=B+A.

* Les regles de priorité sont les mémes qu'avec les complexes : 2 A+3 B désigne la matrice
(2A)+(3B).

*  Pour tous complexes A et W,ona A(wA)=(Au)A eth(A+B)=AA+LB.

* On peut désormais définir la différence de deux matrices A et B de méme taille :
A—B=A+(-1)B.

* Pour toute matrice carrée A d'ordre n,ona A+O,=A.
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b) Multiplication d'une matrice ligne par une matrice colonne

Définition : Soit n un entier naturel non nul.
Soient A=((11 ,-) une matrice ligne 1Xn et B=(b,,1) une matrice colonne nX1 (le nombre
de colonnes de A est donc égal au nombre de lignes de B).

b,,
b

Alors AXB=(‘111 a;; ... aln)x 2 1=a,,Xb, +a,,Xby+...+a,,Xb,,
b

nl

n
Remarque : On peut donc écrire AXBZZ a,. by,
k=1

4
Exemple: (2 —3 1)x|2 |=2X4+(—3)x2+1X0=2,
0

¢) Multiplication de deux matrices

Théoréme : Le produit A B de deux matrices A et B existe si et seulement si le nombre de
colonnes de A est égal au nombre de lignes de B.

Définition : Soient A une matrice de taille mXn et B une matrice de taille nX p .

Le produit AXB ou A B estla matrice de taille mX p dont le coefficient situé a la ligne i
et la colonne j est le coefficient du produit de la ligne i de A parla colonne j de B pour
1<i<m et 1<j<p.

Exemples :
* Le produit d'une matrice 2X3 par une matrice 3X3 est une matrice 2X3 :
1 2 _>o 1 2 0 ~
c 0 2 X| -1 -1 2|=
2 0o 2
IXT+2X(—1)+(=2)x2 1IX2+2X(—1)+(—2)x0 1X0+2x2+(—2)x2
5X1+0X(—1)+2%x2 5x2+0X(—1)+2x0 5X0+0X2 +2X2
_[-5 0 0
9 10 4)°

* Le produit de deux matrices 2X2 est une matrice 2X2 : On peut au brouillon adopter
cette présentation. De plus, on ne détaille pas le calcul des sommes :

0 3

X 14 2

1 2 8 7
3 5 20 19

(le coefficient de la deuxieme ligne, premiere colonne du produit est le produit de la
deuxieme ligne de la premiere matrice par la premiere colonne de la deuxiéme matrice :
3X0+5X4=20).
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Propriétés admises : Soient A, B, C des matrices carrées d'ordre nelN".
 Associativité : (AXB)XC=AX(BXC). Ce produit se note AXBXC ou ABC.
+ Distributivité : AX(B+C)=AB+AC et (A+B)XC=AC+BC .
*  Produit par un complexe A : (AMA)XB=AAB et AX(AB)=AAB.
e Soit I, la matrice unité d'ordre n alors I, XA=A et AXI =A,

Remarque : La multiplication de matrices n'est pas commutative : en général, AX B#BXA (le
produit A B peut méme exister, alors que BA n'existe pas).

Exemple : Soient A= 1 2) et B:( 2 2

-2 3 -1 0
Ona AB= 0 2 | mais BA=| ~? 10 | 4onc AB£BA.
-7 —4 -1 =2

Remarque : Soient A, B et C des matrices carrées d'ordre nelN” .
Si AB=AC , on ne peut pas en déduire que B=C (on ne peut pas « simplifier » par A).

4 -2\ _|10 -3 2 1 5 —=5|_|10 -3
X = et X = .

2 1 20 —6 4 2 0o 7 20 —6
Remarque : Soient A et B deux matrices carrées d'ordre nelN" .

Si AB=0,, on ne peut pas en déduire que A=0, ou B=0, (on ne peut pas, comme pour les
nombres, utiliser le théoreme de 1'équation produit nul).

Exemple : 2 1
SXEMPe - |y >

2 1

Exemple : 1 =3
“\4 2

-2 6

X

0 0

:(0 0

d) Puissances entiéres positives de matrices

Définition : Soit A une matrice carrée d'ordre n€IN", on notera A’=AXA, A’=AXAXA,
etc. Plus généralement, pour keN", A" serale produit de k matrices toutes égalesa A .
Par convention, on posera A'=1 ne

1 8
0 1

) A3:A2><A:(1 12)

A’=AXA=
. On a donc ( 0 1

Exemple : Soit Az(cl) ;l

A4:A2><A2:(1 16)
0 1)/°

1 4n
0 1

On peut démontrer par récurrence que pour tout n€IN , An=(
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I1I — Matrices inversibles et application aux systemes
linéaires

a) Matrices inversibles

Définition et propriété : Soit A une matrice carrée d'ordre n€N’ .

On dit que A est inversible si et seulement si il existe une matrice carrée d'ordre n, notée
A7! telleque AXA'=AT'XA=I,.

La matrice A™' est nécessairement unique, et appelée matrice inverse de A .

Exemple : I =05, (3 1)1 0 et 3 Il 1 051 0 La matrice
“\=-2 1,5 4 2 0 1 4 2 -2 1,5 0 1/°
1 -0,5 . . . 3 1
2 15 est donc inversible et son inverse est 4 ol

Preuve de l'unicité : Supposons que A possede deux inverses, notés B et B'.
Onadonc AB=1,, AB'=I,, BA=1I,, B"A=I,. On peut donc écrire :
B'(AB)=B'I,=B'.Onaaussi (B'A)B=I1,B=B.Comme B'(AB)=(B'A)B,ona B'=B.

b) Matrices inversibles d'ordre 2

Définition : Soit A une matrice carrée d'ordre 2. On a donc A =(g b) . Le complexe

d
ad—bc est appelé déterminant de la matrice A, est noté det(A) ou A .On note aussi, pour
b
le calcul, det(A)=|? 7|.
e calcul, det(A) |C b
Exemple : Pour ona 4= Do3x2—1x4=2
- 4 2|’ 4 2 ‘

Théoreme : Soit A=(‘CI 3) une matrice carrée d'ordre 2. Alors :

e Si A#0, A estinversible ; on a A_1=%( d _b) .
—Cc a
* Si A=0, A n'est pas inversible.
Preuve :
« Si A#0, 1 existe. Soit p=Li|d -b . On a alors
A Al—c a
1 a b d -b 1 ad-bc 0 1 0
AB=——— X = = =1,.
ad—-bclc d (—C al ad-bc 0 ad-bc| |0 1) 2

De méme, on vérifie que 'on a aussi BA=1, donc B estl'inverse de A.
* Si A=0, démontrons par I'absurde que A n'est par inversible : on suppose que A admet
—Cc a
—-Cc a

une inverse A'. Soit B=
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BAA' :BI :B BA A': —C axa b XA’:O ad—bC XA,:O
Ona B(AA') =B et (BA) —c al lc d 0 ad-bc 2
car ad—bc=0.
Comme B(AA')=(BA)A’, on en déduit que B=0, etdonc c=a=0.

" . d —b
D C= .

e méme, soit ( i —b
d —b|_la b ad—bc O

C(AA'")=CI,=C CA)A'= X XA'= XA'=0

Ona C(AA)=CL=C et (CA) d —b"lc d ad—bc 0 :

car ad—bc=0.

Comme C(AA')=(CA)A", on en déduit que C=0, etdonc b=d=0.

On en déduit que A=0, , ce qui est absurde puisque O, n'est pas inversible — son produit
par n'importe quelle matrice carrée d'ordre 2 valant toujours O, , il ne peut égaler I, .
Donc A n'est pas inversible.

Exemple : Soit AZ(é 2) . A=1X6—-5X3=-9 donc A estinversible.

2 1
_ 16 -3 3 3

lors A”'=— =
On a alors “9l|_5 1) 5 1
9 9

c) Application aux systémes linéaires

Exemple : On considere le systeme linéaire d'inconnues X;, X,, X3 suivant :

2x,—3x,+4x,=—1 2 -3 4 X; —1
X;*x,—5x;=2 . Onremarque qu'il peut s'écrire | 1 1 —5|X| x,|=| 2
—4x,+3x,= 6 —4 3 0] |x| |6

2 -3 4 X -1
Onaalors AX=Y avec A=| 1 1 —5|, X=|Xx,| et Y=[ 2
—4 3 0 X 6

L'inconnue est alors la matrice colonne X .

Théoréme : Un systéme linéaire a n inconnues X;, X,,..., X, :
a;; X, ta;, x,+...+a, , x,=y,

a, X +0a,,X,+...+a, X =y o .
21710 2272 ZmTn 72 peut s'écrire sous la forme A X=Y , ou A=(a,~j)1<,-<,,,1<,~<,,

a, x1+a,,,2x2+...+a,,,n Xn=Yn

est une matrice carrée d'ordre n, X =l X,~J et Y=( y,-J sont des matrices colonnes n X1 .
Si A est inversible, le systéme a alors une solution unique : X=A""Y .

Preuve : Si A est inversible, de AX =Y on déduit A" (AX)=A"'Y dou (A"A)X=A"'Y par
associativité. Onadonc X =A"'Y .

Réciproquement, si X =A"'Y ,alors AX=AA'Y=IY=Y.

A"'Y est donc l'unique solution du systéme écrit sous forme matricielle.
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IV — Matrices et transformations du plan

Le plan est muni d’un repére orthonormé direct (0;i,j) .

a, b, c et d sont quatre nombres réels.

a . . .
Définition : Une translation de vecteur t(b) qui a tout point M ( X; y) du plan associe son
point image M tel que MM MM '=t se définit matriciellement comme la somme des

matrices colonnes

r

Propriété admise : Pour les transformations géométriques planes suivantes, on définit la

qui, a tout point M ( X; y) du plan, associe son point

. . _[a b
matrice de transformation T—( c d

=T x| X
y

image M'(x';y"') tel que (;:

. R . (1 0
¢ pour une symétrie axiale par rapport a I’axe des abscisses, T= 0 -1/

fe . R . _[—1 0
e pour une symétrie axiale par rapport a I’axe des ordonnées, T= o 1]’

cos(6) —sin(ﬁ)) ;

. ' O etd’angle 6, T=
pour une rotation de centre O et d’angle 4, ( sin(6) cos(6)

* pour une homothétie de centre O et de rapport k€ER, T=K1I,.

1_J3
. oy ; , n 2 2
Exemple : La matrice associée a la rotation de centre O et d’angle 3 est /3
2 2
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V — Graphes

a) Définitions

Définitions : Un graphe est une représentation composée de sommets (des points) reliés par des
arétes (segments).

Un graphe orienté est un graphe dont les arétes sont munies d’un sens de parcours.
L’ordre d’un graphe est le nombre de sommets de ce graphe.

Le degré d’un sommet est le nombre d’arétes incidentes a ce sommet, sans tenir compte de
leur éventuel sens de parcours.

Deux sommets sont adjacents lorsqu’ils sont reliés par au moins une aréte.

Un graphe est complet lorsque tous ses sommets sont deux-a-deux adjacents.

A

Exemple :
Le graphe ci-contre est d’ordre 7. B
Il n’est pas orienté.
B est de degré 3.

A et G ne sont pas adjacents, D
donc le graphe ne peut étre complet.

Théoréme : Un graphe complet d’ordre n posseéde :
*  n(n—1) arétes s’il est orienté ;

. n(n-1)

arétes s’il est non orienté.

Preuve :

* S’il est orienté, comme tous les sommets sont adjacents, une arréte est définie par un couple
ordonnée (a;b) de sommets. Il y a donc n possibilités pour le sommet a, et n—1 pour le
sommet b . Le nombre d’arétes est nxX(n—1) .

* S’il est non orienté, par rapport a la situation précédente, il y a deux fois moins d’arétes, car
les couples (a;b) et (b;a) correspondent a une méme aréte. Le nombre d’arétes est donc
nx(n—1)

2

n
o]
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Définitions : Pour un graphe non orienté, une chaine est une suite d’arétes consécutives reliant
deux sommets (éventuellement confondus).

La longueur d’une chaine est le nombre d’arétes la composant.

Pour un graphe orienté, un chemin est une suite d’arétes consécutives reliant deux sommets
(éventuellement confondus) en tenant compte du sens de parcours des arétes.

Un graphe non orienté est connexe lorsque chaque couple de ses sommets peut-étre relié par
une chaine.

Exemple : Avec le graphe orienté ci-dessous, le chemin A—-B—C—D—A est de longueur 4.

H A

Exemple : Le graphe ci-dessous n’est pas connexe, puisque A et B ne sont pas reliés par une
chaine.

A
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b) Calcul matriciel et graphes

Définition : Soit n un entier naturel non nul. On considére un graphe d’ordre n
(éventuellement orienté) dont les sommets sont numérotés de 1 a n et rangés dans I’ordre
croissant.

La matrice d’adjacence de ce graphe est la matricée carrée d’ordre n, notée M , dont le
coefficient m;; est égal au nombre d’arétes partant du sommet i pour arriver au sommet j .

Remarques : L.a matrice d’un graphe non orienté est symétrique. L.a matrice d’un graphe comporte
des zéros sur sa diagonale, les autres coefficients étant des 1 ou des O.

0 01 100
0 00 110
) . s a1 0 0 0 0 1
Exemple : Pour le graphe ci-dessous, la matrice d’adjacence M est : M = 1100 10l
01 010 0
0 01 0 00
A
E
B
D E

Propriété : Soient n et k deux entiers naturels non nuls et M la matrice d’adjacence d’un
graphe d’ordre n (orienté ou non), dont les sommets sont numérotés de 1 a n et rangés dans
ordre croissant. Alors, le terme de la i -éme ligne et de la j -iéme colonne de la matrice M*
donne le nombre de chaines (ou de chemins) de longueur k reliant le sommet i au sommet
J.
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Preuve : On démontre le résultat par récurrence sur k . Soit P(k) 1’hypothése « Pour tout
i€[1;n] et pourtout j€[1;n], le coefficient a;; de la matrice M* est le nombre de chaines ou
chemins de longueur k reliant le sommet i au sommet j ».

Initialisation : Si k=1, M*=M et pour tout i€[1;n] et pourtout j€[1;n], m;=1 si i est
reliéa j et 0sinon. M;; est alors le nombre de chemins ou chaines de longueur 1. P(1) est donc
vraie.

Hérédité : On suppose que P(k) est vraie pour un certain k . En notant Mk=(aij),<i <n,1<j<n>ON A

>

donc que 4;; est le nombre de chaines ou chemins de longueur k reliant i a j.

k+1

Onnote M“"'=(b;);<i<p.1<j<n. Comme M""'=M*xM , on a donc pour tout i€[1;n] et pour

<

n
tout j€[1;n] b, ]:Z a,.m,;,ou d,. donne le nombre de chaines de longueur k reliant les

c=1

sommets i et ¢, et M.; donne le nombre de chalnes de longueur 1 reliant les sommets ¢ et j.
Pour tout c€[1;n], m, ; vaut 1 si les sommets ¢ et j sont adjacents et O sinon.
Ainsi, a;;Xm_; vaut a;,. siles sommets ¢ et j sont adjacents et O sinon.

Cela correspond donc au nombre de chaines ou chemins de longueur k+1 reliant le sommet i au
sommet j pour lesquelles la derniére aréte relie le sommet ¢ au sommet j .

n
Ainsi, b, j=z a,.m,; correspond au nombre de chaines de longueur k+1 reliant le sommet i au

c=1

sommet j , en considérant toutes les possibilités pour I’avant-dernier sommet.

Conclusion : Pour tout k entier naturel non nul, le coefficient @;; de la matrice M* est le nombre
de chaines ou chemins de longueur k reliant le sommet [ au sommet j .

2 7 10 17 7 0
7 12 6 18 13 1
10 6 0 2 6 5
. ’ 50, M5: =6 i
Exemple : Avec I’exemple précédent, on a 17 18 2 14 18 5|° Comme a4 ,ily
7 13 6 18 12 1
o 1 5 5 1 0

a 6 chaines de longueur 5 reliant B a C. Comme a,5=0 , il n’y a aucune chaine de longueur 5
reliant A a F .
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Chapitre 8 — Suites et matrices

I — Suites de matrices colonnes

Dans cette partie, U, est une matrice colonne a m lignes, A une matrice carrée d'ordre m et

B une matrice colonne @ m lignes, avec meIN".
Onnote (R) la relation U,, ;=AU +B .

a) Expression du terme général

Une suite constante égale a C vérifie la relation (R) si et seulementsi C=AC+B.
Dans ce cas, en posant X,=U,—C ona X,,;=U,,,—C=AU,+B—(AC+B)=A(U,—C)=AX,.

Théoréme : La suite (X,),cn définie par X,=U,—C vérifie X,,,=AX, et donc pour
neN, X,=A"X,, c'est-a-dire U,=A"(U,—C)+C.

Preuve : On utilise le fait que (X,),en est géométrique de raison A .

b) Limite d'une suite de matrices

Une suite de matrices (U,,),,E,N (toutes de méme format) converge vers la matrice L si les
coefficients de U, convergent vers les coefficients de L correspondants.

En pratique, on exprime chaque coefficient en fonction de n, et on cherche la limite de chaque
coefficient.

Remarque : Si U,=A"U, etsi lim A"=L,alors lim U, =LU,.

n->+ow n=>+ow

IT — Puissances d'une matrice

On rappelle que pour A matrice carrée d'ordre neN’ et pour k€N, A" sera le produit de k
matrices toutes égales @ A , et que A’=1I, .

a) Cas des matrices diagonales

Propriété : Soit D une matrice diagonale. Pour tout neN’, D" estla matrice diagonale
obtenue en élevant a la puissance n tous les coefficients de D .

Remarque : Ce résultat se démontre par récurrence.

55 0

(—1)

5
0 -1

Exemple : Si D= ,alors D*= =" ]

625 0)
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b) Cas des matrices triangulaires

Définition : Une matrice carrée est dite :
* triangulaire supérieure (respectivement inférieure) si tous ses éléments situés en-
dessous (respectivement au-dessus) de sa diagonale sont nuls ;
* strictement triangulaire si elle est triangulaire avec des coefficients diagonaux nuls.

1 0 0 0 2 -6
Exemples : | —3 —5 0| esttriangulaire inférieure, |0 0 56 | est strictement
5 0o 2 0 0 0

triangulaire supérieure.
Propriétés : Les puissances d'une matrice triangulaire sont triangulaires de méme forme.
Les puissances d'une matrice strictement triangulaire d'ordre n sont nulles a partir de

I'exposant n .

Preuve : On traitera le cas n=3, pour M matrice strictement triangulaire supérieure :

0 a b 0 0 ac
Si M={0 0 c¢|,ona M°={0 0 0 |, M’=0,.0n en déduit que pour n>3, M"=0,.
0 0 O 0 0 O

Définition : Une matrice carrée dont une puissance est nulle est dite nilpotente. Le plus petit
entier k pour lequel la puissance de la matrice est nulle est appelé indice de nilpotence.

On déduit de la propriété précédente que si M d'ordre n est strictement triangulaire, son
indice de nilpotence est inférieur ou égala n.

Remarque : Ces propriétés permettent de calculer des puissances d'une matrice en la décomposant
en somme de matrices particulieéres ou en effectuant des calculs par blocs.

III — Diagonalisation d'une matrice carreée

Définition : Une matrice carrée A est dite diagonalisable s'il existe une matrice carrée P
inversible et une matrice diagonale D tellesque A=PDP'.

Théoréme : Si A=PDP ', pour tout n€N, A"=pp"p~".

Preuve : On raisonne par récurrence sur n€IN . Soit k ’ordre de A .
Soit P(n) la propriété A"=pD"P".
+ Initialisation : Pour n=0, A°=I, et PD°P '=P[,P'=PP '=],. P(0) est vraie.
 Hérédité : On suppose P(n) vraie. Onadonc A"=PD"P'.
A"™'=AA"=PDP'PD"P'=PDD"P '=PD""'P'. P(n+1) estvraie.
* Conclusion : Pour n€N, A"=pp"p!
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IV — Chaines de Markov

a) Vocabulaire

Définitions :
* Un processus est une suite (X ,,) de variables aléatoires a valeurs dans un méme
ensemble E appelé ensemble des états. Les éléments de E sont appelés états.
* Pour tout état i€ E et tout n€IN, dire que le processus est dans I’état i a ’instant n

signifie que I’événement [X n=1 ] est réalisé.

Définition d’une chaine de Markov : Une chaine de Markov sur un espace d’états E est un
processus (X,) tel que :

* Pour tout état i€ E , I’événement [X ne1=1 } ne dépend que de I’état dans lequel était le

processus a I’instant n (« le futur ne dépend que de I’instant présent »).
* La probabilité de passer de I’état i al’état j ne dépend pas de I’instant n .

Exemple : Dans un certain pays, s’il pleut un certain jour, alors il pleut également le lendemain
avec une probabilité égale a 0,7. De plus, s’il ne pleut pas un certain jour alors il pleut le
lendemain avec une probabilité égale a 0,2.

On choisit au hasard une journée. X, est la variable aléatoire qui prend la valeur 1 s’il pleut
apres n jours et 2 sinon.

Comme le fait qu’il pleuve une journée ne dépend que du temps de la journée précédente et que la
probabilité que le temps change ou non ne dépend pas du rang de la journée, on en déduit que la
suite (X,) est une chaine de Markov a deux états 1 et 2.

b) Graphe et matrice de transition d’une chaine de Markov

Définitions :
* Un graphe pondéré est un graphe dans lequel chaque aréte est affectée d’un nombre réel
positif appelé poids de cette aréte.
» Un graphe probabiliste est un graphe orienté pondéré par des réels appartenanta [0;1] et
dans lequel la somme des poids des arétes issues de chaque sommet est égale a 1.

On associe a une chaine de Markov le graphe dont les sommets sont les états et dont I’arréte
orientée reliant I’état i al’état j est pondérée par la probabilité de passer de I’état i al’état

Jj . Par construction, c’est un graphe probabiliste.

Exemple : Avec I’exemple précédent, le graphe associé est le suivant :
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Chapitre 8 — Suites et matrices : 45/49



On associe a une chaine de Markov dont k est le nombre d’états la matrice de transition
P=( Di j)ls,-sk telle que p;; estla probabilité de passer de ’état i a j.On a donc

1<j<k

pij:P(ani)(Xn+1=j) pour tous 1<i<k, 1<j<k et nelN.

0,7 0,3)

Exemple _: Avec I’exemple précédent, on a P=( 02 08

Remarque : Les événements {X,Fj } avec 1< j<k formant une partition de I’univers € (y

compris en les conditionnant par un évenement {X n= l'} ), on en déduit que la somme des
coefficients de chaque ligne de la matrice égale 1.

V — Distributions d’une chaine de Markov

Dans ce paragraphe, (X,) estune chaine de Markov de matrice de transition P .

a) Distribution apres plusieurs transitions

Propriété : Pour tous états i et j, et tout entier naturel n=1, le coefficient en ligne i et
colonne j dela matrice P" estla probabilité de passer de I’état i al’état j en n
transitions.

Preuve par récurrence : On se place dans le cas d’une chaine de Markov a deux états notés 1 et 2. Le
cas général est analogue.

Soient p la probabilité de passer de I’état 1 a 1 et q celle de passer de 2 a 2. On a donc 0<p<1
et 0<g<1 et nécessairement, le graphe associé est le suivant :

1§ogop!

l1—gq

p 1-p
1-.q q |-

La matrice de transition associée est P :(

Pour tout entier n>1, on note Q(n) la propriété « Pour tous états i et j, le coefficient (P");; est

la probabilité de passer de I’état i al’état j en n transitions ».

J

Initialisation : Par définition de la matrice P, le coefficient (P');
’état i al’état j en une transition, donc Q(1) est vraie.

; est la probabilité de passer de
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Hérédité : On suppose que pour un entier n>1, Q(n) est vraie. On a donc P'= 1_"/), 5 "=
prizpixp=| % 17, X( p 1—p): a,p+(1-a,)(1-q) @(1-p)+(1-a,)q|
-5, b l-q ¢ (1=-8)p+.(1-q) (1-)(1-p)+Aq
Apres n transitions Apres n+1 transitions
1
/
1
I~p
Okn 2
Q
7 1
‘*’1 1-d

Avec I’arbre ci-dessus et la formules des probabilités totales, on peut constater que pour tous états i
et j,le coefficient (P™');; estla probabilité de passer de I’état i al’état j en n+1 transitions,
donc Q(n+1) est vraie.

ij

Conclusion : Pour tous états i et j et tout entier n>1, le coefficient (P"),
passer de I’état [ al’état j en n transitions.

; est la probabilité de

5_10,41875 0,58125

103875 06125
la probabilité de passer de I’état 2 a I’état 1 en 5 transitions (et donc d’une journée non pluvieuse a
une journée pluvieuse cing jours plus tard) est égale a 0,3875.

Exemple : Avec I’exemple précédent, on a P . On en déduit notamment que

Définition : La distribution initiale, notée T, est la loi de probabilité de la variable aléatoire
X, . La distribution aprés n transitions, notée T, , est celle de la variable aléatoire X, . Elles
sont représentées par des matrices lignes.

Propriété : T, étant la distribution initiale d’une chaine de Markov, alors pour tout n€N , la
distribution T, aprés n transitions vérifie w,=mn,P" et T, ;=T XP
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Preuve : Les propriétés sont évidentes pour n=0 . Pour n=>1, on reprend les notations de la preuve

s s . — n__ an 1_ O{n R .
récédente. Soit M,=(a, b,|.Comme P = , on considere 1’arbre ci-dessous.
B, b,
Initialement Apres n transitions
1
On
1
1 ~aq,
[N 2
Q
% 1
1—Pn
2
YA

an:ao an+b0(1_ﬁn)

On peut affirmer avec les probabilités totales que b =a,(1—a J+b,f,

. Ainsi, pour tout n=1,
m,=P"n, .

Donc, pour tout entier naturel n, m,,,=m,XP""'=m,X P"X P=m,XP .

b) Distributions invariantes

Définition : Soit P la matrice de transition associée a une chaine de Markov. T est une
distribution invariante de la chaine de Markov si et seulement si T=ntXP .

Exemple : Avec I’exemple précédent, on remarque que

04 0,6/xP=(0,4 0,6]x 3’2 g’g =(04 0,6] donc n=(0,4 0,6) est une distribution
invariante de la chaine de Markov. Ceci signifie que si un jour la probabilité de pluie est de 40 %,
cette probabilité sera la méme tous les jours suivants.

Propriété admise : Soit P la matrice de transition associée a une chaine de Markov de
distribution initiale T, .

S’il existe un entier naturel k=1 tel que P* ne comporte pas de zéro, alors la suite (T[,,)
converge vers une distribution 1 invariante et indépendante de T, .

De plus, dans ce cas T est I’'unique distribution invariante de cette chaine de Markov.
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0,7 0,3
0,2 08
(m,) converge vers I’unique distribution invariante de cette chaine. On utilise deux méthodes.
*  Premiére méthode : Avec la relation T =mnX P
n=(x y| avec x+y=1 est invariante signifie que mP=m . On a donc :

Exemple : Avec I’exemple précédent, comme P=

) ne comporte pas de zéro, alors la suite

’ 0,7 03|_ 0,7 x+0,2y=x ., |—0,3x+0,2y=0 —

X =[x Y ) oY ) ©—0,3x+0,2 y=0 car
[x ¥ 02 08 Y 03x+0,8 y=y | 0,3x—0,2y=0 Y
les deux équations sont équivalentes. Or x+y=1 donc on résout _0,3x)f|-+)?’:21y Ve

2
3 x=0,4 , »
e ° " .Onadonc n=(04 0,6).
2 _ y=0,6
S yty=1

3
*  Deuxieme méthode : Avec I’étude de la distribution T,
On note ﬂnz(an b,,) avec a,+b,=1 |a distribution aprés n transitions.
On a donc pour tout n€N a,,;=0,7 a,+0,2b,<a,,,;=0,7a,+0,2(1—a,) =
a,,;=0,5a,+0,2 . On étudie ensuite cette suite arithmético-géométrique (détermination du

point fixe, utilisation d’une suite auxiliaire géométrique et justification de la convergence de
celle-ci) et on obtient que lim a,=0,4 donc n=(0,4 0,6).

n->+oo
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