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Chapitre 1 – Nombres complexes et 
algèbre

I – Ensemble des nombres complexes

a) Définitions et premières propriétés

Propriétés admises     :   Il existe un ensemble, noté ℂ  des nombres complexes qui possède les 
propriétés suivantes :

• ℂ  contient l’ensemble ℝ  des réels (on note ℝ⊂ℂ )

• Les quatre opérations des nombres réels se prolongent aux nombres complexes et les 
règles de calculs sont les mêmes.

• Il existe un nombre complexe noté i  tel que i2=−1 .

• Tout nombre complexe z  s’écrit de manière unique z=x+ i y  avec x∈ℝ  et y∈ℝ .

Définitions     :   L’écriture z=x+ i y  avec x∈ℝ  et y∈ℝ est appelée forme algébrique du 
nombre complexe z . x  est la partie réelle de z , notée ℜ( z ) , et y  est la partie imaginaire de 
z , notée ℑ( z ) . z∈ℝ⇔ℑ( z )=0  et z  est un imaginaire pur ⇔ℜ( z )=0 .

Exemples : Pour z=7−6 i , on a ℜ(z )=7  et ℑ(z)=−6 . i  est un imaginaire pur.

Propriété     :   Deux nombres complexes sont égaux si et seulement si ils ont même partie réelle et 
même partie imaginaire. C’est une conséquence de l’unicité de cette forme.

b) Calculs dans l’ensemble des nombres complexes

D’après les propriétés de ℂ , on calcule comme dans ℝ , en tenant compte du fait que i2=−1 .

En particulier, les identités remarquables se prolongent à ℂ .

Exemples     :  

• 11+2 i−(1+ i)=10+ i

• (5+2 i)(6−3 i)=30−15 i+12 i−6 i 2=30−3i−6×(−1)=36−3 i

• (4−i √3)2=42−2×4×i √3+(i √3)2=16−8 i √3+i2×3=16−8 i √3+(−1)×3=13−8 i √ 3

• i37=i36×i1=i2×18×i=(i2)18×i=(−1)18×i=1×i=i
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Propriété (4  ème   identité remarquable)     :   Pour tous complexes a  et b , on a 
(a+ i b)(a−i b)=a2+ b2 . Cette identité s’utilise généralement avec a  et b  réels.

Preuve     :   (a+i b)(a−ib)=a2−(i b)2=a2−i2 b2=a2−(−1)b2=a2+b2 .

Exemple     :   Dans ℂ , 4 a2+49  peut se factoriser ainsi  : 4 a2+49=(2 a)2+7 2=(2a+7 i)(2a−7 i) .

II – Conjugué d’un nombre complexe

a) Conjugaison

Définition     :   Soit z  un nombre complexe de forme algébrique x+ i y  avec x∈ℝ  et y∈ℝ .

Le conjugué de z , noté z , est le nombre complexe x− i y .

Exemples     :   2−5 i=2+5 i   ; (1−√5)i=(−1+√5)i .

b) Propriétés

z= z z+ z=2 ℜ( z ) z− z=2 iℑ( z)

z∈ℝ⇔ z= z  z  est un imaginaire pur 
⇔ z=− z

z z=(ℜ( z))2+(ℑ( z))2

(4ème identité remarquable)

Preuves     :   Il suffit de remplacer z  par sa forme algébrique x+ i y  avec x∈ℝ  et y∈ℝ .

c) Division

L’inverse d’un nombre complexe z≠0  est le nombre complexe Z  tel que z×Z=1 .

On le note 
1
z

. Pour tous nombres complexes z  et z '≠0 , on définit le quotient 
z
z '

=z× 1
z '

 ; pour 

déterminer sa forme algébrique, on multiplie numérateur et dénominateur par z ' .

Exemple     :   On cherche la forme algébrique de z=4−2 i
3+i

.

z=
(4−2 i)(3−i)
(3+i)(3−i)

=12−4 i−6 i+2 i2

32+12 =12−4 i−6 i−2
10

=10−10 i
10

=1−i  donc ℜ( z )=1  et 

ℑ( z )=−1 .
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d) Conjugaison et opérations

Propriétés     :   Pour tous nombres complexes z  et z '  et tout entier naturel n⩾ 1 , on a :

z+ z '= z+ z ' z z '= z z ' zn= zn

( 1
z )= 1

z

avec z≠0

( z
z ' )= z

z '

avec z '≠0

Preuve des deux premières propriétés : Soient x , y , x '  et y '  des nombres réels tels que 
z=x+i y  et z '=x '+i y ' .

z+ z '=x+ i y+x '+i y '=x+x '+i( y+ y )=x+x '−i( y+ y ')=x−i y+ x ' – i y '=z+z ' .

z z '=(x+i y )(x '+ i y ')=x x '+i x y '+i y x '+i2 y y '=x x '− y y '+i(x y '+ y x ')  donc

z z '=x x '− y y '−i(x y '+ y x ') . De plus, on a :

z z '=(x−i y)(x '−i y ')=x x '−i x y '−i y x '+i2 y y '=x x '− y y '−i(x y '+ y x ')  donc z z '=z z ' .
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Chapitre 2 – Divisibilité

Définitions     :   On note ℕ  l'ensemble des entiers naturels : ℕ={0;1 ;2 ;3 ;4 ;…}
On note ℤ  l'ensemble des entiers relatifs : ℤ={…;−4 ;−3 ;−2;−1;0 ;1 ;2 ;3 ;4 ;…}

Notation     :   Pour tous réels a  et b  avec a⩽b  on note ⟦a ;b⟧  l’ensemble des entiers relatifs 
compris au sens large entre a  et b . On a donc ⟦a ;b⟧=ℤ∩[ a ;b ] .

Exemple     :   ⟦−3 ;√ 2⟧={−3 ;−2 ;−1 ;0 ; 1 } .

I – Divisibilité des entiers relatifs

a) Multiples et diviseurs d'un nombre entier relatif

Définition     :   Soient a∈ℤ  et b∈ℤ . On dit que a  divise b  (ou que b  est un multiple de a ) 
s'il existe k∈ℤ  tel que b=k a . On note a∣b , et a∤b  dans le cas contraire.

Remarques     :  
• Pour tout a∈ℤ , 0×a=0  donc tout entier relatif a  divise 0.
• Tout entier relatif non nul b  possède un nombre fini de diviseurs : en effet, ses diviseurs 

sont en valeur absolue inférieurs ou égaux à ∣b∣ , les diviseurs appartiennent à 
{−|b|;… ;−1;1 ;… ;|b|}=⟦−b; b⟧ ∖ {0 } . b  a donc au plus 2∣b∣  diviseurs.

Exemple     :   L'ensemble des diviseurs dans ℤ  de 24 sont :
{−24 ;−12 ;−8 ;−6 ;−4 ;−3;−2;−1 ;1 ;2 ;3 ;4 ;6 ; 8 ;12 ;24 } .

b) Propriétés de la division dans l'ensemble des entiers relatifs

Dans cette partie, a , b  et c  sont trois entiers relatifs non nuls.

Propriété     :   Si a∣b  et a∣c , alors pour tout u∈ℤ  et v∈ℤ , a∣u b+v c . 

Preuve     :   Si a∣b , alors il existe k ∈ℤ  tel que b=k a .
Si a∣c , alors il existe k '∈ℤ  tel que c=k ' a .
On en déduit que ub+v c=u k a+v k ' a=a(u k+v k ')  donc a∣ub+v c  puisque u k+v k '∈ℤ .

Exercice résolu     :   Soit n∈ℤ  tel que n∣n+8 . Déterminons les valeurs possibles de n .
• n∣n  et n∣n+8  donc n∣n+8−n⇒n∣8 .
• Réciproquement, si n∣8 , comme n∣n , alors n∣n+8 .

Conclusion : n∣n+8⇔n∣8 . Les valeurs possibles pour n  sont donc −8 ;−4 ;−2 ;−1 ;1; 2 ;4 ;8 .

Propriété     (transitivité)     :   Si a∣b  et b∣c  alors a∣c .

Preuve     :   Si a∣b , alors il existe k ∈ℤ  tel que b=k a . Si b∣c , alors il existe k '∈ℤ  tel que 
c=k ' b . On a donc c=k ' k a  donc a∣c  puisque k k '∈ℤ .
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II – Division euclidienne d’un entier relatif par un entier 
naturel non nul

Théorème et définition     :   Soient a∈ℤ  et b∈ℕ  avec b≠0 .
Il existe un unique couple (q , r )  d'entiers relatifs tels que a=b q+r  avec 0⩽r<b .
On dit que a  est le dividende, b  le diviseur, q  le quotient et r  le reste dans la division 
euclidienne de a  par b .

Exemples     :   La division euclidienne de 27 par 4 donne 27=4×6+3 . Celle de −27  par 4 donne 
−27=4×(−7 )+1 .

Remarques     :  
• Le mot « diviseur » n'a pas le même sens ici que dans la partie I.
• Il y a de multiples écritures de a  sous la forme bq+r  : par exemple, pour a=103  et 

b=13 , on a 103=13×7+12=13×6+25=13×5+38 , etc.
Mais seule la première égalité est la relation de division euclidienne, car 0⩽12<13 .

• Lorsqu'on réalise une division « à la main », on réalise une division euclidienne.

Preuve du théorème     :   

• Existence de q  et r   :
◦ 1er cas : a  est un multiple de b . Alors il existe un entier relatif q  tel a=b q .
◦ 2d cas : a  n’est pas un multiple de b . Il existe des multiples de b  inférieurs strictement 

à a  et d’autres supérieurs strictement à a .
On peut donc écrire bq<a<b (q+1)  où b(q+1)  est le plus petit multiple de b  
supérieur strictement à a .
Finalement, pour tout a∈ℤ , il existe un entier relatif q  tel que bq<a<b (q+1) .
En posant r=a−bq , on obtient a=b q+r  et 0<r<b .

• Unicité du couple (q , r )   :
Supposons qu'il existe deux couples (q , r )  et (q ' , r ')  tels que :
a=b q+r=b q '+r '  (1) avec 0⩽r<b  et 0⩽r '<b  (2).
De (1), on déduit que b(q−q ' )=r '−r  avec q '−q  entier, donc r '−r  est un multiple de 
b . De (2), on déduit que −b<r '−r<b . Le seul multiple de b  strictement compris entre 
−b  et b  est 0, donc r '−r=0 , soit r '=r . Par (1), on en déduit que q '=q . Donc le 
couple (q , r )  est unique.

Chapitre 2 – Divisibilité : 7/49



III – Congruences dans l’ensemble des entiers relatifs

Propriété et définition : Soit c  un entier naturel non nul. Deux entiers relatifs a  et b  ont 
même reste dans la division euclidienne par c  si et seulement si a−b  est un multiple de c .
Si c'est le cas, on dit que a  et b  sont congrus modulo c  (ou que a  est congru à b  modulo 
c ). On note a≡b(c)  ou a≡b(mod c )  ou a≡b[c ]  ou a≡b[mod c ] .

Exemples     :   Si on s'intéresse aux congruences modulo 4, on a :
5≡1[ 4] , 6≡2 [4] , 7≡3 [4 ] , 8≡0 [ 4] , 9≡1[ 4] , …

Preuve de la propriété     :   On écrit les relations de division euclidienne par c  : a=cq+r , 0⩽r<c  et 
b=c q '+r ' , 0⩽r '<c .

• Supposons que r=r ' , alors a−b=c (q−q ')  avec q−q '  entier, donc a−b  est un 
multiple de c .

• Réciproquement, si a−b  est multiple de c , alors c∣a−b  et comme c∣c(q−q ' ) , alors par 
combinaison linéaire, c∣r−r ' . Comme −c<r−r '<c , il faut que r−r '=0 , soit r=r ' .

Exercice résolu     :   Démontrons que 214≡25[9]  : 214−25=189=9×21  donc 214≡25[9] .

Remarques     :   Soient a  un entier relatif et c  un entier naturel non nul.
• a  est un multiple de c  si et seulement si a≡0 [c] .
• Les nombres congrus à a  modulo c  sont les nombres de la forme a+k c  avec k ∈ℤ .
• r  est le reste de la division euclidienne de a  par c  ⇔a≡r [c ]  et 0⩽r<c .

Propriété (transitivité)     :   Soient a , a '  et a ' '  des entiers relatifs et c  un entier naturel non 
nul.
Si a≡a ' [c ]  et a '≡a ' ' [c ] , alors a≡a ' ' [ c ] .

Propriétés (congruences et opérations)     :   Soient a , b , a ' , b '  des entiers relatifs et c  un 
entier naturel non nul. Si a≡b [ c]  et a '≡b ' [ c] , alors :

• a+a '≡b+b ' [ c ] , a−a '≡b−b ' [ c]  et a a '≡bb ' [ c ] .
• an≡bn[ c ]  pour tout n∈ℕ* .

Preuve     :   Par hypothèse, il existe k∈ℤ  et k '∈ℤ  tels que a=b+k c  et a '=b '+k ' c .
• a+a '=b+b'+(k+k ' )c  avec k +k '  entier, donc a+a'≡b+b ' [c ] .
• a a '=b b '+(b k '+b ' k +k k ' c)c  avec b k '+b ' k+k k ' c  entier, donc aa '≡b b ' [c] .
• Pour la dernière relation, c'est une récurrence sur la relation précédente.

Remarques     :   Les règles opératoires sont les mêmes qu'avec une égalité classique, cependant :
• Il n'y a pas de division, ou de « simplification » : 22≡18 [4]  mais 11 et 9 ne sont pas 

congrus modulo 4.
• Pas de propriété hasardeuse avec les puissances : 5≡1 [4] , mais 25≡32≡0[4 ]  et 21≡2[4 ]  

donc 25  et 21  ne sont pas congrus modulo 4.

Exercice résolu     :   Cherchons le reste de la division euclidienne de 2342  par 5.
22=4 , 23=8  et 24=16  donc 22≡4[5] , 23≡3 [5]  et 24≡1[5 ] .
342=4×85+2  donc 2342≡24×85+2≡(24)85×22[5]  donc 2342≡185×4 [5]  soit 2342≡4 [5 ] .
Comme 0⩽4<5 , 2342  a pour reste 4 dans la division euclidienne par 5.
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Chapitre 3 – Équations polynomiales 
dans l’ensemble des nombres complexes

I – Équations du second degré dans l’ensemble des 
nombres complexes

a) Racines carrées d’un nombre réel dans l’ensemble des nombres complexes

Définition     :   a  désigne un nombre réel. Les solutions dans ℂ  de l’équation z2=a  sont 
appelées racines carrées de a  dans ℂ .

Propriété     :   Tout nombre réel non nul admet deux racines carrées dans ℂ .

• Si a>0 , ce sont les nombres réels √ a  et −√ a .

• Si a<0 , ce sont les nombres imaginaires purs i √−a  et −i √−a .

Preuve     :   

• Si a>0 , z2=a⇔( z−√a)(z+√a)=0 . En résolvant l’équation-produit, on a la conclusion.

• Si a<0 , z2=a⇔ z2−i2(−a)=0⇔(z−i √−a)(z+ i√−a)=0 . En résolvant l’équation-
produit, on a la conclusion.

Exemples     :   Les racines carrées dans ℂ   :

• de 7 sont √7  et −√7 .

• de −7  sont i√7  et −i√7 .

b) Racines complexes d’un polyn  ôme   du second degré à coefficients réels  

Propriété : Soit P( z )=a z2+ b z+ c  un polynôme du second degré avec a∈ℝ* , b∈ℝ  et 
c∈ℝ  de discriminant Δ=b2−4 ac . Alors, dans ℂ , P( z )  admet :

• Si Δ=0 , une unique racine réelle : z0=− b
2 a

.

• Si Δ>0 , deux racines réelles : z1=
−b+√Δ

2 a
 et z2=

−b−√Δ
2 a

.

• Si Δ<0 , deux racines complexes conjuguées z1=
−b+ i √−Δ

2 a
 et z2=

−b− i √−Δ
2 a

.
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P  reuve     :   On part de la forme canonique P(z)=a(z+ b
2 a )

2

− Δ
4 a

 et on factorise par a  :

P(z)=a[(z+ b
2 a )

2

− Δ
4 a2 ] . Chercher les racines revient donc à résoudre dans ℂ  (z+ b

2a )
2

= Δ
4 a2 .

• Si Δ=0 , (z+ b
2a )

2

=0⇔ z+ b
2 a

=0⇔ z=− b
2 a

.

• Si Δ>0 , (z+ b
2a )

2

= Δ
4 a2 ⇔ z+ b

2a
=√Δ

2 a
 ou z+ b

2 a
=−√Δ

2 a
⇔ z=−b+√Δ

2 a
 ou 

z=−b−√Δ
2 a

.

• Si Δ<0 , (z+ b
2a )

2

= Δ
4 a2 ⇔ z+ b

2a
= i √−Δ

2 a
 ou z+ b

2 a
=− i √−Δ

2 a
⇔ z=−b+ i √−Δ

2 a
 ou 

z=−b− i √−Δ
2 a

.

Remarque     :   En remarquant que Δ=0  peut être vu comme un cas particulier des deux autres cas, on 
a alors z1=z2=z0 , et P(z)=a(z−z1)(z−z2) .

II – Polynômes

Dans cette partie, n  est un entier naturel non nul et on adoptera la convention algébrique 00=1 .

Définition     :   Un polynôme non nul P  à coefficients réels de la variable complexe z  est défini 
par une expression de la forme P( z )=an zn+ an−1 zn−1+…+a2 z2+a1 z+ a0  avec pour tout 
k∈⟦0 ; n⟧  ak∈ℝ  tels que an≠0 . L’entier naturel n  est le degré du polynôme.

Remarque     :   On peut étendre cette définition et considérer les polynômes à coefficients complexes 
de la variable complexe z . Les résultats qui suivent sont énoncés dans ce cadre.

Définition     :   z0∈ℂ  est une racine d’un polynôme P  si et seulement si P( z0)=0 .

Exemple: P  défini sur ℂ  par P=2 z3+z 2+41 z−21  est un polynôme de degré 3 à coefficients 

réels. 
1
2

 est une racine de P  car P( 1
2 )=0 .
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Propriété     :   Soit P un polynôme à coefficients réels. Alors, si z0∈ℂ est une racine de P, alors 
nécessairement z0 est une racine de P.

Preuve     :   Soit P(z)=an zn+an−1 zn−1+…+a2 z2+a1 z+a0=∑
k=0

n

ak zk  un polynôme tel que pour tout 

k∈⟦0; n⟧ ak∈ℝ. On a donc pour tout k∈⟦0; n⟧ ak=ak. Soit z0∈ℂ une racine de P. On a donc 

P(z0)=0. On a alors P(z0)=∑
k=0

n

ak z0
k=∑

k=0

n

ak z0
k=∑

k=0

n

ak z0
k=∑

k=0

n

ak z0
k=0=0 donc z0 est une racine de 

P.

Propriété : Pour tous a∈ℂ  et z∈ℂ ,  zn−an=( z−a)( zn−1+a z n−2+a2 zn−3+…+an−2 z+an−1) , 

ce qui se note zn−an=( z−a)∑
k=1

n

ak−1 z n−k .

Exemple     :   Pour tout z∈ℂ , on a z5−32=z5−25=(z−2)(z4+2 z3+4 z2+8 z+16 ) .

Preuve     :   On développe R(z )=(z−a)(zn−1+a zn−2+a2 zn−3+…+an−2 z+an−1)  :

R(z )=zn+a zn−1+a2 zn−2+…+an−2 z2+an−1 z−a zn−1−a2 zn−2−a3 zn−3−…−an−1 z−an .

En simplifiant, il reste R(z )=zn−an
.

Théorème : Soit a∈ℂ . Si P  est un polynôme à coefficients réels de la variable complexe de 
degré n⩾ 1  dont a  est une racine, alors on peut factoriser P( z )  par ( z−a) , c’est-à-dire 
qu’il existe un polynôme Q  de degré n−1  tel que pour tout  z∈ℂ  on ait 
P( z )=( z−a)Q( z ) .

Exemple     :   On considère le polynôme P(z)=z3+z2+z+1 . P(i)=0  donc il existe un polynôme Q  
de degré 2 tel que pour tout z∈ℂ , P(z)=(z−i)Q (z) .

Mieux, comme P est à coefficients réels et que i en est une racine, on en déduit que i=−i en est 
également une racine.

On en déduit que P peut se factoriser par (z−i)(z+ i)=z 2+1 et donc qu’il existe un polynôme de 
degré 1 R(z ) tel que P(z )=(z 2+1)R(z ).
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P  reuve     :   P  étant un polynôme à coefficients réels de la variable complexe de degré n , il existe des 

réels a0  ; a1  ; … an  avec an≠0  tels que pour tout z∈ℂ , P(z)=∑
k=0

n

ak zk .

a  est une racine de P  donc P(a)=0⇔P (z)=P (z)−P(a)=∑
k=0

n

ak zk−∑
k=0

n

ak ak=∑
k=0

n

ak (zk−ak ) .

En utilisant la propriété précédente, on a :

P(z)=∑
k=0

n

ak (z−a)(zk−1+a zk−2+…+ak−2 z+ak−1)=(z−a)∑
k =0

n

ak (zk−1+a zk−2+…+ak −2 z+ak−1) . 

On pose Q(z)=∑
k=0

n

ak (zk−1+a zk−2+…+ak−2 z+ak−1) . Comme an≠0 , Q  est de degré n−1  et on a 

le résultat souhaité.

Théorème     :   Un polynôme de degré n⩾1  admet au plus n  racines.

Preuve par récurrence     :   Soient n∈ℕ*
 et HR (n)  l’hypothèse le polynôme P  de degré n  a au plus 

n  racines.

Initialisation : Pour n=1 , le polynôme est défini par P(z)=a z+b  avec a∈ℂ*
, b∈ℂ .

Il admet exactement une racine, z=−b
a

 donc HR (1)  est vraie.

Hérédité : On suppose que pour un entier k⩾1 , HR (k )  est vraie, c’est-à-dire que tout polynôme 
de degré k  admet au plus k  racines. On considère un polynôme P  de degré k+1 .

• Si P  n’admet pas de racine, alors HR (k+1)  est vraie puisque 0⩽k+1 .

• Sinon, soit a∈ℂ  une racine de P . D’après le théorème précédent, il existe un polynôme 
Q  tel que, pour tout z∈ℂ , P(z)=(z−a)Q(z ) . Q  est de degré k .
Alors, d’après HR (k ) , Q  a au plus k  racines. Par conséquent, P  qui admet 
éventuellement la racine supplémentaire a  (qui peut être déjà racine de Q ) admet au plus 
k+1  racines. Donc HR (k+1)  est vraie.

Conclusion : Tout polynôme de degré n⩾1  admet au plus n  racines.
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Chapitre 4 – PGCD et applications

I – PGCD de deux entiers relatifs

a) Définition et propriétés de réduction

Exemple     :   Les diviseurs de 12 sont 1 ; 2 ; 3 ; 4 ; 6 ; 12 et leurs opposés.
Les diviseurs de – 9 sont 1 ; 3 ; 9 et leurs opposés.
Les diviseurs communs à – 9 et 12 sont donc 1 ; 3 et leurs opposés (– 1 et – 3).

Remarques     :   
• Pour tout a∈ℤ , les diviseurs communs à 0 et a  sont les diviseurs de a .
• Pour tout a∈ℤ , les diviseurs communs à 1 et a  sont – 1 et 1.

Propriété et définition     :   Soient a  et b  deux entiers relatifs non tous les deux nuls. L'ensemble 
des diviseurs communs à a  et b  admet un plus grand élément ; on l'appelle Plus Grand 
Commun Diviseur de a  et b  et on le note PGCD(a ;b) .

Exemples     :   PGCD(−9 ;12)=3  ; PGCD(−1; 45)=1  ; PGCD(0 ;−457)=457 .

Preuve     :   Supposons que a≠0 . L'ensemble des diviseurs communs de a  et b est non vide puisqu'il 
contient 1 et – 1. Cet ensemble est fini car il ne contient que des entiers compris entre – a  et a . 
Donc il admet un plus grand élément qui est le plus grand des diviseurs communs à a  et b .

Remarques     :   Soient a  et b  deux entiers relatifs non tous les deux nuls.
• PGCD(a ;b)∈ℕ .
• PGCD(a ;b)=PGCD(b ;a)=PGCD(∣a∣;∣b∣)  ; on se ramène en général au cas où a  et b  

sont positifs.
• PGCD(1 ;b)=1  et PGCD(0 ;b)=∣b∣  (avec ici b≠0 ).

Définition     :   a  et b  sont premiers entre eux si et seulement si PGCD(a ;b)=1 .

Exemple     :   PGCD(47 ;15)=1  donc 47 et 15 sont premiers entre eux.

Propriété     :   Soit D(a ; b)  l'ensemble des diviseurs communs à deux entiers relatifs a  et b .
Alors D(a ; b)=D (a−k×b ;b)  pour tout k∈ℤ .

Preuve     :   Pour tout k∈ℤ  :
• Si d  divise a  et b , alors d  divise a  et a−k b , donc d  divise a−k b  et b .
• Si d  divise a−k b  et b , alors d  divise (a−k b)+k b  c'est-à-dire a , donc d  divise a  

et b .
Conclusion : D(a ;b)=D(a−k b ;b)  pour tout k ∈ℤ .

Exemple     :   Avec les notations précédentes, on a : 
D(63 ;75)=D(63;75−63)=D (63 ;12)=D(63−5×12 ;12)=D(3 ;12)={−3 ;−1;1 ; 3 } .
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Propriété de réduction du PGCD     :   Soient a  et b  deux entiers relatifs non tous les deux nuls.
• PGCD(a ;b)=PGCD(a−k b ;b)  pour tout k∈ℤ .
• Si 0<b⩽a , PGCD(a ;b)=PGCD(r ;b)  où r  est le reste de la division euclidienne de 

a  par b .
• Si b  est un diviseur positif de a , PGCD(a ;b)=b .

Preuve     :  
• C'est une conséquence immédiate de la propriété précédente.
• Si 0<b⩽a , on applique l'égalité précédente avec k=q , quotient de la division euclidienne 

de a  par b .
• Si b∣a  avec b>0 , r=0  donc PGCD(a ;b)=PGCD(0 ;b)=b .

b) L'algorithme d'Euclide

Cet algorithme permet de déterminer le PGCD de deux entiers naturels non tous les deux nuls, en 
utilisant la relation :
Si 0<b⩽a , PGCD(a ;b)=PGCD(r ;b)  où r  est le reste de la division euclidienne de a  par b .

Exemple     :   Cherchons PGCD(240 ;36 ) .

a = b × q + r

240 = 36 × 6 + 24

36 = 24 × 1 + 12

24 = 12 × 2 + 0
On déduit de ces relations que :
PGCD(240 ;36 )=PGCD(24 ; 36 )=PGCD(12 ; 24)=PGCD(12; 0)=12 .

Propriété (algorithme d'Euclide)     :  
Soient a  et b  deux entiers tels que 0<b⩽a .
L'algorithme suivant permet de calculer en un nombre fini d'étapes PGCD(a ;b) .

• Calculer le reste r  de la division euclidienne de a  par b .
• Tant que r≠0 , remplacer a  par b  et b  par r .
• Calculer le reste r  de la division euclidienne de a  par b .
• Fin Tant que.
• Retourner b .

Preuve     :   Écrivons les divisions successives : a=b q0+r0  avec 0⩽r0<b . 
• Si r 0=0 , on s'arrête à cette première étape.
• Si r 0≠0 , on remplace a  par b  et b  par r 0  : b=r0 q1+r1  avec 0⩽r1<r0 .
• Si r 1≠0 , on remplace b  par r 0  et r 0  par r 1  : r 0=r 1q2+r 2  avec 0⩽r 2<r1 .
• Si r 2≠0 , on remplace r 0  par r 1  et r 1  par r 2  : r 1=r 2 q3+r 3  avec 0⩽r3<r2 .

On construit ainsi une liste strictement décroissante r 0 , r 1 , r 2 , … Or il n'y a qu'un nombre fini 
d'entiers entre r 0  et 0. Cette liste est donc finie donc il existe k ∈ℕ  tel que r k≠0  et r k+1=0 .
Comme r k+1=0 , l'algorithme s'arrête. Il comporte bien un nombre fini d'étapes.
On a donc PGCD(a ;b)=PGCD(r k ; r k+1)=PGCD(rk ;0)=r k  (dernier reste non nul).
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Propriété     :   Soient a  et b  deux entiers relatifs non tous les deux nuls.
Les diviseurs communs à a  et b  sont les diviseurs de leur PGCD.

Exemple     :   Déterminons les diviseurs communs à – 12 458 et 3 272.
Cherchons PGCD(12458 ; 3272)   :

• 12458=3272×3+2642
• 3272=2642×1+630
• 2642=630×4+122
• 630=122×5+20
• 122=20×6+2
• 20=2×10+0

On a donc PGCD(−12458 ;3272)=2  donc les diviseurs communs à – 12 458 et 3 272 sont : 
– 2 ; – 1 ; 1 ; 2.

Preuve     :   Deux nombres entiers opposés ayant les mêmes diviseurs, on peut supposer 0⩽b⩽a .
• Si b=0 , alors a≠0 . D(a ,b)=D(a)  et PGCD(a ;b)=a  donc la propriété est vraie.
• Si b≠0  et b∣a , D(a ;b)=D(b)  avec b=PGCD(a ;b)  donc la propriété est encore vraie.
• Si b≠0  et b∤a , avec les notations de la preuve de l'algorithme d'Euclide et la propriété on 

a : D(a ;b)=D(r 0;b)=D(r0; r1)=…=D(r k ;r k+1)=D(r k ; 0)=D(rk )  avec 
r k=PGCD(a ; b) .

c) Autres propriétés du PGCD de deux entiers

Propriété d'homogénéité     :   Soient a  et b  deux entiers relatifs non tous les deux nuls.
Pour tout λ∈ℕ* , PGCD(λ a ;λ b)=λ PGCD(a ; b) .

Preuve     :   Si a  ou b  est nul, ou si a∣b , le résultat est trivial.
Sinon, on suppose 0<b<a . La recherche de PGCD(λa ;λb)  à l'aide de l'algorithme d'Euclide 
conduit à écrire des égalités qui sont celles de la recherche de PGCD(a ;b)  multipliées par λ . 
Pour le dernier reste non nul, on aura donc PGCD(λa ;λb)=λ PGCD(a ;b) .

Exemple     :   PGCD(150 ;100 )=50 PGCD(3 ;2)=50×1=50 .

Propriété caractéristique     :   Soient a  et b  deux entiers relatifs non tous les deux nuls et d  un 

entier naturel. d=PGCD ( a ;b)⇔ {a=d a '
b=d b '

 avec a '  et b '  premiers entre eux.

Preuve : Si d =PGCD(a ;b) , il existe a '  et b '  tels que a=d a '  et b=d b ' .
Alors, PGCD(a ;b)=PGCD(d a ' ;d b ' )=d PGCD(a ' ;b ')  par homogénéité, puisque d ∈ℕ* .
Comme PGCD(a ;b)=d , on en déduit que PGCD(a ' ; b ')=1  et donc que a '  et b '  sont 
premiers entre eux.
Réciproquement, si a=d a '  et b=d b '  avec a '  et b '  premiers entre eux et d ∈ℕ , alors d ≠0  
car a  et b  sont non tous les deux nuls, donc par homogénéité, 
PGCD(a ;b)=d PGCD (a ' ;b ' )=d ×1=d .

Exemple     :   90=9×10  et 40=4×10  avec 9 et 4 premiers entre eux donc PGCD(90 ;40)=10 .
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II – Théorème de Bézout

Propriétés     :   Soient a  et b  deux entiers relatifs non tous les deux nuls et d=PGCD( a ;b) .
1. Il existe u  et v  entiers relatifs tels que au+b v=d  : c'est la relation de Bézout.
2. L'ensemble des entiers au+b v  (avec u∈ℤ , v∈ℤ ) est l'ensemble des multiples de d .

Remarque     :   Il n'y a pas unicité du couple (u ; v)  tel que a u+b v=d .

Preuve     :   
1. On utilise les notations de la démonstration de l'algorithme d'Euclide.
De a=b q0+r0  on obtient r 0=a−b q0=a u0+b v0  avec u0=1  et v0=−q0  qui sont des entiers.
De b=r0 q1+r1 , on obtient r1=b−q1r 0=b−(au0+bv0)q1=au1+bv1  avec u1=−u0 q1  et 
v1=1−v0 q1  entiers.
Pas-à-pas, on exprime chaque reste comme combinaison linéaire entière de a  et b  jusqu'à r k , 
c'est-à-dire d .
2. Soit n=a u+b v  avec u  et v  appartenant à ℤ . Comme d  divise a  et b , d  divise n . Toute 
combinaison linéaire de a  et b  est un multiple de d .
Réciproquement, si n  est un multiple de d , il existe k ∈ℤ  tel que n=k d . Or, il existe u  et v  
entiers tels que d =a u+b v  donc n=(k u)a+(k v )b . Il existe donc deux entiers u '  et v '  tels que 
n=a u '+b v ' . Tout multiple de d  est une combinaison linéaire entière de a  et b .

Exemple     :   Pour a=231 , et b=165 , on a :
• 231=165+66
• 165=66×2+33
• 66=33×2+0

Donc PGCD(231;165)=33 . En utilisant les relations précédentes, on a :
• 33=165−66×2
• 66=231−165

Donc 33=165−(231−165)×2=165−2×231+165×2=165×3+231×(−2) .
On remarque que l'on a aussi  : 165×17+231×(−12)=33 .

Théorème de Bézout     :   Soient a  et b  deux entiers relatifs.
a  et b  sont premiers entre eux si et seulement si il existe deux entiers relatifs u  et v  tels 
que au+b v=1 .

Preuve     :   Si a  et b  sont premiers entre eux, d =1  et d'après la proposition précédente, il existe 
u∈ℤ  et v∈ℤ  tels que a u+b v=1 .
Réciproquement, s'il existe u∈ℤ  et v∈ℤ  tels que a u+b v=1 , alors un diviseur commun à a  et 
b  divise 1, donc c'est soit 1 soit – 1 donc PGCD(a ;b)=1 .

Exemples     :   
• a=4  et b=−9  sont premiers entre eux car 4×(−2)+9×1=1 .
• Deux entiers consécutifs sont toujours premiers entre eux, car pour n∈ℤ ,

n×(−1)+(n+1)×1=1 .
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III – Théorème de Gauss

Théorème de Gauss     :   Soient a , b  et c  trois entiers relatifs non nuls.
Si a  divise b c  et si a  est premier avec b , alors a  divise c .

Exemple     :   5 divise 75=3×25 , 5 et 3 sont premiers entre eux donc 5 divise 25.

Contre-exemple     :   Pour a=12 , b=6  et c=10 , a  n'est premier ni avec b , ni avec c .
a  divise bc=60 , mais a  ne divise ni b  ni c .
L'hypothèse a  premier avec b  est donc capitale.

Preuve     :   a  divise bc  donc il existe k ∈ℤ  tel que bc=k a . Comme a  et b  sont premiers entre 
eux, il existe d’après le théorème de Bézout des entiers relatifs u  et v  tels que a u+b v=1 .
En multipliant par c  cette relation, on obtient : a cu+b c v=c , soit a cu+k a v=c  soit 
a (c u+k v)=c . Comme c u+k v∈ℤ , a  divise c .

Corollaire du théorème de Gauss     :   Si deux nombres premiers entre eux a  et b  divisent un 
entier c , alors a b  divise c .

Exemple     :   5 divise 100, 4 divise 100. Comme 5 et 4 sont premiers entre eux, 5×4=20  divise 100.

Preuve     :   a∣c  donc il existe k ∈ℤ  tel que c=k a . Comme b  est premier avec a  et que b∣k a , 
alors d'après le théorème de Gauss il existe l∈ℤ  tel que k=l b . On a donc c=l b a , donc a b∣c .
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Chapitre 5 – Nombres premiers

I – Nombres premiers

Définition     :   Un nombre entier naturel est premier si et seulement s'il possède exactement deux 
diviseurs positifs : 1 et lui-même.

Exemples     :  
• 2 est premier car ses seuls diviseurs positifs sont 1 et 2.
• 0 n'est pas premier car il possède une infinité de diviseurs positifs.
• 1 n'est pas premier car il a un seul diviseur positif  : 1.

Remarques     :  
• Un entier supérieur à 2 qui n'est pas premier est dit composé.
• Si p  est un nombre premier et n  un entier, ou bien p  divise n , ou bien p  et n  sont 

premiers entre eux, puisqu'ils n'ont que 1 comme diviseur positif commun.

Théorème     :  
• Tout entier naturel supérieur ou égal à 2 admet un diviseur premier.
• Tout entier naturel n  non premier supérieur à 2 admet un diviseur premier p  

inférieur ou égal à √ n .

Preuve     :   Soit n∈ℕ , n⩾2 . Si n  est premier, il admet un diviseur premier : lui-même.
Si n  n'est pas premier, il admet un diviseur positif autre que lui-même et 1.
On considère alors E , ensemble des diviseurs positif (autres que n  et 1) de n .
D'après la remarque précédente, E  n'est pas vide. Il admet donc un plus petit élément, que l'on note 
p .

Supposons que p  ne soit pas premier. Il existerait un diviseur positif d  de p . d  serait aussi 
diviseur de n . Donc d  serait un élément de E , ce qui contredit le fait que p  soit le plus petit 
élément de E . C'est absurde. Donc p  est premier.
p  est premier et divise n  donc il existe q∈ℕ  tel que n=p q  avec 1<q<n .

Donc q  est un diviseur de n  (autre que n  et 1) donc q∈E  et p⩽q  puisque p  est le plus petit 
élément de E .
On a donc p2⩽ pq⇒ p2⩽n⇒ p⩽√ n .

Propriété (test de primalité)     :   Soit n  un entier naturel supérieur ou égal à 2. Si n  n'est 
divisible par aucun des nombres premiers inférieurs ou égaux à √ n , alors n  est premier.

Preuve     :   Si n  n'est pas premier, il admet un diviseur premier inférieur ou égal à √ n .
Le test de primalité est la contraposée de cette proposition.
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Exemples     :  
• Déterminons si 4559 est premier : √ 4559≈67,52 .

On teste la divisibilité de 4559 par les nombres premiers inférieurs ou égaux à 67.
On remarque que 4559=47×97  donc 4559 n'est pas premier.

• Déterminons si 4561 est premier : √ 4561≈67,54 .
On teste la divisibilité de 4561 par les nombres premiers inférieurs ou égaux à 67.
Aucune division ne fonctionne, donc 4561 est premier.

Théorème     :   Il existe une infinité de nombres premiers.

Preuve par l'absurde     :   Supposons que l'ensemble des nombres premiers est fini.
Il n'existerait qu'un nombre n  de nombres premiers : p1 , p2 , p3 , …, pn .

Considérons le nombre N= p1× p2×p3×…× pn+1 , ce qui se note N=∏
i=1

n

p i+1 .

Comme N= p1( p2×p3×…× pn)+1  : 1 est le reste de la division euclidienne de N  par p1 , donc 
N  n'est pas divisible par p1 .

De même, en effectuant les divisions euclidiennes par les autres nombres premiers p2 , …, pn , on 
détermine que N  n'est divisible par aucun nombre premier.
Donc N  serait premier. Donc N  serait l'un des nombres p1 , …, pn , ce qui est faux. C'est 
absurde.
Conclusion : L'ensemble des nombres premiers est infini.

II – Décomposition en facteurs premiers

Exemple     :   On peut écrire 800=8×4×25=25×52  où 2 et 5 sont des nombres premiers.

a) Existence et unicité d'une décomposition

Théorème     :   Tout entier n⩾2  se décompose en un produit de nombres premiers. Cette 
décomposition est unique à l'ordre des facteurs près.
On peut donc écrire n= p1

α 1 p2
α 2… pk

α k  où p1 , p2 , …, pk  sont des nombres premiers deux à 
deux distincts et α1 , α2 , …, αk  sont des entiers naturels non nuls.

Preuve     :  
• Existence : Soit n⩾2  un entier. On sait d'après le premier théorème du I qu'il admet un 

diviseur premier p1 . On a donc n=p1 n1  avec 1⩽n1<n .
Si n1=1 , alors n=p1  et la propriété est démontrée.
Sinon, alors n1  possède un diviseur premier p2  et on a donc n=p1 p2 n2  où 1⩽n2<n1 .
On continue ainsi tant que le quotient n i  est supérieur à 1.
On forme ainsi une liste d'entiers n1 , n2 ,… strictement décroissante et minorée par 1.
Elle est donc finie, c'est-à-dire qu'à partir d'un certain rang m  on a nm=1  et donc 
n=p1 p2 ... pm  où les p i  sont des nombres premiers non nécessairement distincts.
En regroupant les facteurs égaux on a la factorisation voulue.
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• Unicité : On suppose qu'un certain nombre premier p  apparaît avec l'exposant α⩾1  dans 
une décomposition, et l'exposant β⩾0  dans une autre ( β=0  si le facteur n’apparaît pas 
dans cette décomposition).
On a alors n=pαa= pβb , où a  et b  sont des produits de nombres premiers distincts de 
p .

Si α>β , pα−βa=b , donc p  divise b , ce qui contredit le fait que p  ne fait pas partie des 
facteurs de b .
Si α<β , a= pβ−αb , ce qui contredit le fait que p  ne fait pas partie des facteurs de a .
Donc α=β . Ce qui garantit l'unicité de la factorisation.

Remarque     :   On peut noter n=∏
i=1

k

pi
αi . 

b) Diviseurs d'un entier naturel supérieur ou égal à 2

Propriété     :   Si p1
α1 p2

α 2… pk
αk  est la décomposition en facteurs premiers d'un entier naturel n , 

les diviseurs de n  sont de la forme p1
β1 p2

β2… pk
βk  où 0⩽β1⩽α1 , …, 0⩽βk⩽αk .

Preuve     :   Les nombres entiers de la forme p1
β1 p2

β2 … pk
βk  où 0⩽β1⩽α1 , …, 0⩽βk⩽αk  sont des 

diviseurs de n . En effet, on peut écrire n=( p1
β1 p2

β2… pk
βk)× p1

α1−β1 p2
α2−β2… pk

α k−βk  où les exposants 
αi−βi  sont positifs ou nuls.
Réciproquement, soit d  un diviseur de n . Si pβ  divise d  (avec p  premier), alors pβ  divise n .
L'unicité de la décomposition en facteurs premiers de n  implique que le nombre pβ  doit figurer 
dans cette décomposition, et donc que p  est l'un des p i  et que 0⩽β⩽αi .
d  est donc de la forme souhaitée.

Exemple     :   24=23×3  donc 24 a pour diviseurs les entiers 2α×3β
 où 0⩽α⩽3  (donc α=0 , 1, 2 

ou 3) et 0⩽β⩽1  (donc β=0  ou 1). On peut donc lister tous les diviseurs de 24 :

• 20×30=1

• 20×31=3

• 21×30=2

• 21×31=6

• 22×30=4

• 22×31=12

• 23×30=8

• 23×31=24

Conséquence     1 :   Si p1
α1 p2

α 2… pk
αk  est la décomposition en facteurs premiers d'un entier naturel 

n , le nombre de diviseurs de n   dans ℕ  est (1+α1)(1+α2)…(1+αk)=∏
i=1

k

(1+αi) .
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Preuve     :   Un diviseur de n  est de la forme p1
β1 p2

β2 … pk
βk  où 0⩽β1⩽α1 , …, 0⩽βk⩽αk .

Pour chaque p i  avec 1⩽i⩽k , l'exposant peut prendre 1+αi  valeurs possibles.
Le nombre total de diviseurs est alors (1+α1)(1+α2)…(1+αk) , puisque l'unicité de la 
décomposition en produit de facteurs premiers assure que ces diviseurs sont tous différents.

Conséquence 2     :   Soient a  et b  deux entiers naturels supérieurs ou égaux à 2. Le PGCD de a  
et b  est égal au produit des facteurs premiers communs aux décompositions de a  et b , 
chacun d'eux étant affecté du plus petit exposant avec lequel il figure dans a  et b .

Exemple     :   31500=22×32×53×7  et 2733750=2×37×54 .
On déduit de la conséquence 1 que 31500 possède 3×3×4×2=72  diviseurs dans ℕ , et 2733750 
en possède 2×8×5=80 .
On déduit de la conséquence 2 que PGCD(31500 ;2733750 )=2×32×53=2250 .

III – Petit théorème de Fermat

Petit théorème de Fermat     :   Soit p  un nombre premier et a  un entier naturel non divisible 
par p . Alors a p−1−1  est divisible par p , c’est-à-dire que a p−1≡1[ p ] .

Preuve     :   (1) p  n’apparaît pas la décomposition en facteurs premiers de 1, 2, …., p−1 .

Donc p  n’apparaît pas dans la décomposition en facteurs premiers de ∏
k=1

p−1

k=( p−1)! . On en 

déduit que p  et ( p−1)!  sont premiers entre eux.

(2) Si k∈⟦1 ; p−1⟧ , alors le reste rk  de la division euclidienne de k a  par p  est non nul ; en 
effet, si p  divisait k a , comme p  et k  sont premiers entre eux, d’après le théorème de Gauss, p  
diviserait a . Or ceci est impossible car par hypothèse a  n’est pas divisible par p .

(3) Si k '∈⟦1 ; p−1⟧  est distinct de k  (par exemple k<k ' ), alors les restes rk  et rk '  sont 
distincts. En effet, si rk=rk ' , alors p  diviserait k ' a−k a=a(k '−k) . Comme k '−k∈⟦1 ; p−1⟧  
cela signifierait que rk '−k  serait nul, ce qui contredit le point (2).

(4) Ainsi, les p−1  restes r1 , r2 , …, r p−1  sont tous distincts et appartiennent à ⟦1 ; p−1⟧ . On en 

déduit que {r1 ;r2;…;r p−1 }  est une permutation de ⟦1 ; p−1⟧ , donc ∏
k=1

p−1

rk=(p−1)! .

On en déduit que ∏
k=1

p−1

(k a)≡∏
k=1

p−1

r k [ p ]⇔( p−1) !ap−1≡( p−1) ![ p ] . Donc p∣(( p−1)!(ap−1−1)) . Or 

p  et ( p−1)!  sont premiers entre eux donc d’après le théorème de Gauss, p  divise ap−1−1 .

Conséquence     :   si p  est premier et a∈ℕ , alors a p≡a[ p ] .

Preuve     :   Si a  est divisible par p , alors a(ap−1−1)=a p−a  est également divisible par p  donc 
ap≡a[ p ] . Sinon, d’après le petit théorème de Fermat, ap−1≡1[ p ]⇒a p≡a [ p ] .
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Chapitre 6 – Nombres complexes, 
géométrie et formule du binôme

Dans ce chapitre, le plan est muni d’un repère orthonormé (O ; u⃗ , v⃗)  direct, c’est-à-dire que 

(u⃗ ; v⃗ )=π
2
+2k π  avec k∈ℤ . On appelle ce plan le plan complexe.

I – Géométrie et nombres complexes

a) Affixe d’un point ou d’un vecteur

Définitions     :   À tout nombre complexe z  de forme algébrique x+ i y  (avec x∈ℝ  et y∈ℝ ) 
on associe le point M ( x ; y )  du plan complexe. On dit que M  est le point image de z  et que 
O⃗M  est le vecteur image de z  ; on dit que z  est l’affixe du point M  et du vecteur O⃗M .

Remarques: 

• Tout point M  est l’unique point image d’un complexe z , et réciproquement tout complexe 
z  est l’unique affixe d’un point M .

• Pour indiquer que z  est l’affixe de M , on note M (z) .

• Les nombres réels sont les affixes des points de l’axe des abscisses, appelé axe des réels.

• Les nombres imaginaires purs sont les affixes des points de l’axe des ordonnées appelé axe 
des imaginaires purs.

Propriétés     :  

• Deux vecteurs sont égaux si et seulement si leurs affixes sont égales.

• Si u⃗  et v⃗  ont pour affixes respectives z  et z ' , alors pour tout λ∈ℝ  l’affixe du 
vecteur u⃗+λ v⃗  est z+λ z ' .

• Pour tous points A  et B  d’affixes respectives z A  et z B , l’affixe de A⃗B  est z B− z A .

• Pour tous points A  et B  d’affixes respectives z A  et z B , l’affixe de I , milieu de 

[ AB ] , est z I=
z A+ z B

2
.

Remarque     :   Ces résultats se prouvent comme en classe de seconde, à l’aide de la relation de Chasles 
notamment.
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Interprétation géométrique du conjugué     :   Pour tout z∈ℂ , les points M ( z )  et M ' ( z )  sont 
symétriques l’un de l’autre par rapport à l’axe des abscisses.

En effet, si z=x+i y  avec x∈ℝ  et y∈ℝ , alors z=x – i y  donc M  et M '  ont la même abscisse 
et des ordonnées opposées.

b) Module d’un nombre complexe

Définition     :   Soit z∈ℂ  de forme algébrique x+ i y  avec  x∈ℝ  et y∈ℝ .

Le module de z  est le nombre réel positif noté |z|  défini par |z|=√ x2+ y2 .

Interprétation géométrique du module     :   Dans le plan complexe, si M  a pour affixe z , alors 
|z|=OM .

Remarques     :  

• Si x∈ℝ , alors le module de x  est la valeur absolue de x .

• |z|=0⇔OM=0⇔ M=O⇔ z=0 .

Propriétés     :   Pour tout z∈ℂ , 

(1) |− z|=|z| (2) |z|=|z| (3) z z=|z|2

Preuves     :   (1) et (2) découlent de la définition, et (3) de la quatrième identité remarquable.
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Propriétés     :   Pour tous complexes z , z '  et tout entier naturel non nul n , on a :

(1) |z z '|=|z||z '| (2) |zn|=|z|n

(3) | 1
z '|= 1

|z '|
si z '≠0

(4) | z
z '|= |z|

|z '|
si z '≠0

Preuves     :  

• (1) |z z '|2=z z '×z z '=z z ' z z '=z z z ' z '=|z|2|z '|2=(|z||z '|)2
. Or |z z '|  et |z||z '|  sont des 

réels positifs, donc on en déduit que |z z '|=|z||z '| .

• (2) se démontre par récurrence en utilisant (1).

• (3) et (4) se démontrent en utilisant (1) et le fait que pour tout z '≠0 , z '× 1
z '
=1 .

Définition     :   On note IU  l’ensemble des nombres complexes de module 1. Il s’agit dans le plan 
complexe du cercle de centre O  et de rayon 1.

Propriétés     :   Pour tous complexes z  et z '  de l’ensemble IU , on a :

(1) z z '∈ IU
(2) 

1
z '

∈IU (3) 
z
z '

∈IU

Preuves     :   Comme z∈IU  et z '∈UI , on a |z|=|z '|=1 . ce qui entraîne :

• |z z '|=|z||z '|=1×1=1  donc z z '∈UI  ; on a donc (1).

• | 1
z '|= |1|

|z '|
=

1
1
=1  donc 

1
z '

∈UI  ; on a donc (2).

• En appliquant (1) à z  et 
1
z '

 (qui appartient à UI  d’après (2)) on obtient (3). 
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c) Arguments d’un nombre complexe

Définition     :   Soit z  un nombre complexe non nul de point image M  dans le plan complexe, et 

N  est le point du cercle trigonométrique tel que O⃗N= 1
OM

O⃗M . On appelle argument de z  

et on note arg ( z)  tout nombre réel θ  dont N  est l’image sur le cercle trigonométrique.

Remarques     :   Un nombre complexe non nul a une infinité d’arguments : si θ  est l’un d’eux, les 
autres s’écrivent θ+k2 π  avec k∈ℤ . On note arg (z)=θ  ou arg (z)=θ[ 2 π ]  ce qui se lit : 
« modulo 2π  ». On dit aussi qu’une mesure de l’angle orienté (u⃗ ;O⃗M )  est θ .

Propriétés     :   Pour tout complexe non nul z  :

arg (− z)=arg ( z )+π [ 2 π ] arg ( z )=−arg ( z) [ 2 π ]

z∈ℝ⇔arg ( z)=0 [π ] z  est un imaginaire pur ⇔arg ( z)= π
2
[ π ]

Les angles sont mesurés depuis (O ; u⃗)
.
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II – Formes trigonométrique et exponentielle d’un 
complexe non nul

a) Forme trigonométrique d’un complexe non nul

Soit z∈ℂ*  dont  θ  est un argument. On considère le point M  image de z  et N  le point tel que 

O⃗N= 1
|z|

O⃗M . N  appartient donc au cercle trigonométrique et est l’image de θ , donc N a pour 

coordonnées cartésiennes (cos (θ);sin (θ))  et l’affixe de N  est zN=cos (θ)+ isin(θ) . 

Comme O⃗M=|z|⃗ON , on en déduit que z=|z|(cos (θ)+ isin(θ)) .

Définition     :   Soit z∈ℂ* . L’écriture z=|z|(cos(θ)+ i sin (θ))  où arg ( z)=θ[ 2 π ]  est appelée 
une forme trigonométrique de z .

Propriétés     :  

• Deux nombres complexes non nuls sont égaux si et seulement si ils ont même module et 
même argument modulo 2 π .

• Si z=r (cos(α)+ i sin(α))  avec r>0 , alors |z|=r  et arg ( z)=α [2 π ] .

• Si z=r (cos(α)+ i sin(α))  avec r<0 , alors |z|=−r  et arg ( z)=α+ π[ 2 π] .

b) Relation fonctionnelle

La fonction f  définie sur ℝ  par f (θ)=cos (θ)+isin (θ)  est dérivable sur ℝ  comme somme de 
fonctions dérivables sur ℝ . Pour tout θ∈ℝ , f ' (θ)=cos ' (θ)+isin ' (θ)⇔

f ' (θ)=−sin (θ)+ icos (θ)=i2 sin(θ)+icos (θ)=i(i sin(θ)+cos (θ))=i f (θ)⇔ f '(θ)= i f (θ) .

f  est donc solution de l’équation différentielle y '= i y , donc pour tout θ∈ℝ  on a : 
f (θ)=k e iθ  avec k∈ℂ .

Comme f (0)=cos (0)+isin (0)=1  et k ei×0=k e0=k , on en déduit que k=1 .

On a donc, pour tout θ∈ℝ , f (θ)=e iθ .

Notation     :   Pour tout θ∈ℝ , on peut noter cos (θ)+ i sin(θ)=e iθ . Cette notation est due à 

Euler en 1748. Ainsi, e iθ  désigne le nombre complexe de module 1 dont un argument est θ .

Exemples     :  

e i 2 π=1 e i π=−1
e

i π
2=i e

i π
3=1

2
+i √ 3

2
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c) Forme exponentielle

Tout nombre complexe z≠0  admet une forme trigonométrique z=|z|(cos (θ)+ isin(θ))  avec
θ=arg( z)[ 2 π ] . On peut donc écrire z=|z|e iθ .

Définition     :   Une forme exponentielle d’un nombre complexe z≠0  dont un argument est θ , 
est l’écriture z=|z|e iθ .

Exemple     :   Le nombre complexe z=−2 e
i π

6  n’est pas une forme exponentielle car −2<0 .

Pour déterminer la forme exponentielle, on peut utiliser le fait que e i π=−1 .

On a donc z=2 e i π e
i π

6=2e
i(π+ π

6 )=2e
i 7 π

6 .

d) Propriétés de la forme exponentielle

Propriétés     :   Pour tous réels θ  et θ '  et tout entier naturel n , on a :

• |e iθ|=1  et arg ( eiθ )=θ[ 2 π ]

• e iθ=e iθ '⇔θ=θ ' [ 2 π ]

• Formule de Moivre : (e iθ )n
=e i nθ

• e iθ×ei θ '=e i (θ+θ ' )  et e iθ

e iθ ' =ei (θ−θ ' )

• 1

e iθ =ei (−θ )=eiθ

Remarques     :  

• Ces propriétés traduisent les propriétés de l’argument.

• La formule de Moivre peut s’écrire (cos (θ)+ i sin(θ)) n=cos (nθ)+ i sin(nθ) .

Propriétés (formules d’Euler)     :   Pour tout réel θ , cos (θ)= eiθ+e−iθ

2
 et sin(θ)= e iθ−e−iθ

2 i
.

Preuve     :   eiθ=cos(θ)+i sin(θ)  et e−iθ=cos (−θ)+isin (−θ)=cos (θ)−i sin(θ) .

Ainsi, eiθ+e−iθ=2 cos (θ)⇔ eiθ+e−iθ

2
=cos (θ)  et eiθ−e−iθ=2i sin(θ)⇔ eiθ−e−iθ

2i
=sin(θ) .
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e) Formules d’addition et de duplication, propriétés de l’argument

Théorème (formules d'addition) : Pour tous réels a  et b , on a :

(1) cos (a+ b)=cos( a)cos (b) – sin( a)sin (b) (2) cos (a – b)=cos (a) cos( b)+sin( a)sin (b)

(3) sin( a+b)=sin( a)cos (b)+sin(b) cos( a) (4) sin( a – b)=sin(a) cos( b) – sin(b)cos ( a)

Preuves   :   On part de la relation fonctionnelle eia eib=e i(a+b) . On a donc avec les formes 
trigonométriques : (cos (a)+isin (a))(cos(b)+i sin(b))=(cos(a+b)+i sin(a+b))⇔
cos (a)cos (b)+i cos(a)sin(b)+ isin(a)cos (b)+i2sin (a)sin(b)=(cos (a+b)+i sin(a+b))⇔
cos (a)cos (b)−sin(a)sin(b)+i(cos (a)sin(b)+sin (a)cos(b))=(cos (a+b)+i sin(a+b)) .
En égalisant les parties réelles, on obtient (1) et en égalisant les parties imaginaires on obtient (3).
En remplaçant b  par – b  dans (1) et (3) et en utilisant la parité de la fonction cosinus et l’imparité 
de la fonction sinus, on obtient (2) et (4). On peut également utilisation la relation fonctionnelle 
eia e−ib=ei(a−b ) .

Conséquence (formules de duplication) : Pour tout réel a , on a :

cos (2 a)=cos2(a) – sin2(a) cos (2a)=2 cos2(a)−1

cos (2a)=1 – 2 sin2( a) sin(2 a)=2 sin(a) cos( a)

Preuve : il suffit de prendre b=a  dans les relations (1) et (3), et d'utiliser le fait que 
cos2(a)+sin2(a)=1 .

Propriétés     :   Pour tous complexes non nuls z  et z '  et tout entier naturel n , on a :

(1) arg ( z z ')=arg( z )+ arg( z ') [ 2 π ] (2) arg ( zn)=n arg ( z) [ 2 π ]

(3) arg ( 1
z ' )=−arg( z ')[ 2 π ] (4) arg ( z

z ' )=arg ( z)−arg ( z ') [ 2 π ]

Preuves     :   En posant z=|z|(cos (θ)+ isin(θ))  et z '=|z '|(cos (θ ')+isin (θ ')) , on a donc :
• z z '=|z||z '|(cos(θ)+i sin(θ))(cos (θ ')+isin (θ '))⇔

z z '=|z z '|(cos(θ)cos (θ ')−sin(θ)sin(θ ')+i(sin(θ)cos (θ ')+sin(θ ')cos (θ))) . En utilisant 
les formules d’addition on a : z z '=|z z '|(cos(θ+θ ')+isin (θ+θ ')) . Donc 
arg (z z ')=arg (z)+arg(z ')[2 π ]  ce qui fournit (1).

• Avec une récurrence immédiate, (1) permet d’obtenir (2).

• arg (z '× 1
z ' )=arg (1)=0  et arg (z '× 1

z ' )=arg (z ')+arg( 1
z ' )  fournissent (3).

• (1) et (3) fournissent (4).
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III – Racines n-ièmes de l’unité

Définition     :   Une racine n-ième de l’unité est une solution dans ℂ  de l’équation zn=1 .

Exemple     :   i  est une racine quatrième de l’unité, puisque i4=1 .

Propriété     :   Les racines n-ièmes de l’unité s’écrivent e
i 2 kπ

n  avec k∈⟦0 ; n−1⟧ .

Preuve     :   On pose z=r eiθ  avec r>0  et θ∈ℝ . On a donc : 

zn=1⇔ rn ei nθ=1⇔{ rn=1
nθ=0 [2 π ]

⇔{ r=1

θ= k 2 π
n

 avec k∈ℤ

Or, tout entier relatif k  peut s’écrire k=n q+s  avec s , q  dans ℤ  tels que 0⩽s<n .

Ainsi, 
k2 π

n
=q×2 π+ s 2 π

n
, soit 

k2 π
n

= s 2π
n

[ 2 π ] .

L’équation zn=1  possède donc n  solutions : les nombres complexes e
i 2 s π

n  avec s∈⟦0 ;n−1⟧ .

IV – Formule du binôme de Newton dans l’ensemble des 
nombres complexes

a) Les coefficients binomiaux

Définition     :   Soient k  et n  deux entiers naturels tels que k⩽n . Le nombre de combinaisons 

de k  éléments parmi n  est noté (n
k) .

Remarque     :   L’ordre des éléments n’intervient pas. (nk )  est notamment le nombre de chemins 

comportant k  succès pour n  réalisations indépendantes de la même épreuve de Bernoulli.

Propriétés     :   On peut démontrer que, pour tous entiers n  et k  tels que k⩽n , on a :

(n
0)=1 (n

1)=n ( n
k )=( n

n−k) Si 0⩽k⩽n−1  on a 

( n
k )+ ( n

k+ 1)=( n+ 1
k+ 1)
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Conséquence     :   Pour tout entier n  on a (n
n)=1  et ( n

n−1)=n .

b) Le triangle de Pascal

Le triangle de Pascal est un tableau qui donne les valeurs des coefficients binomiaux ( n
k ) .

Comme 0⩽k⩽n , il a la forme d'un triangle. Il peut bien sûr être prolongé pour n=4 , n=5 , … et 
pour k=4 , k=5 , …

k=0 k=1 k=2 k=3

n=0 ( 0
0)

n=1 ( 1
0) ( 1

1)
n=2 ( 2

0) ( 2
1) ( 2

2)
n=3 ( 3

0) ( 3
1) ( 3

2) ( 3
3)

Les remarques et propriétés précédentes permettent de calculer les coefficients :

• Pour n∈ℕ , ( n
0)=1  donc dans la colonne «  k=0  » toutes les valeurs valent 1.

• Pour n∈ℕ , ( n
n)=1  donc dans la diagonale ( 0

0) , ( 1
1) , … toutes les valeurs valent 1.

• Pour 0⩽k⩽n−1 , ( n
k )+ ( n

k+ 1)=( n+ 1
k+ 1)  donc la valeur de la case ( n+ 1

k+ 1)  s'obtient en 

ajoutant la case du dessus ( n
k+ 1)  avec la case à côté de cette dernière ( n

k ) .

• Pour n∈ℕ  et k∈ℕ  avec k⩽n , (nk )=( n
n−k )  donc chaque ligne peut se lire dans les deux 

sens.

On obtient donc :

k=0 k=1 k=2 k=3

n=0 1

n=1 1 1

n=2 1 2 1

n=3 1 3 3 1

Chapitre 6 – Nombres complexes, géométrie et formule du binôme : 30/49



c) La formule du binôme de Newton

Propriété     :   Pour tous a∈ℂ  et b∈ℂ , et pour tout n∈ℕ*  on a :

(a+ b)n=an+ (n
1) an−1 b+ (n

2) an−2 b2+ (n
3) an−3 b3+…+( n

n−1) a1 bn−1+bn
.

Ceci se note de manière condensée : (a+ b)n=∑
k=0

n

(n
k) an−k bk

 lorsque a  et b  sont non nuls.

Exemple     :   Soit z∈ℂ . On a alors : 

(z−1)4=z4+(4
1) z3×(−1)1+(4

2) z2×(−1)2+(4
3) z1×(−1)3+(−1)4=z4−4 z 3+6 z2−4 z+1 .

Preuve par récurrence     :   Soient a∈ℂ , b∈ℂ , et n∈ℕ*
.

Soit P(n)  l’hypothèse (a+b)n=∑
k=0

n

(nk )an−k bk
.

Initialisation : (a+b)1=a+b  et a1+b1=a+b  donc P(1)  est vraie.

Hérédité : On suppose que pour un entier naturel h⩾1  P(h)  est vraie :

(a+b)h=∑
k=0

h

(hk )ah−k bk
. On multiplie chaque membre par (a+b)  :

(a+b)(a+b)h=(a+b)(∑
k=0

h

(h
k )ah−k bk )⇔

(a+b)h+1=ah+1+a∑
k=1

h

(hk )ah−k bk+b∑
k =0

h−1

(hk )ah−k bk+bh+1⇔ah+1+∑
k=1

h

(h
k )ah−k+1 bk+∑

k =0

h−1

(hk )ah−k bk+1+bh+1

On pose t=h−1  dans la première somme et t=h  dans la seconde :

(a+b)h+1=ah+1+∑
t=0

h−1

( h
t+1)ah−t b t+1+∑

t=0

h−1

(ht )ah−t b t+1+bh+1⇔

(a+b)h+1=ah+1+∑
t=0

h−1

[( h
t+1)+(ht )]ah−t b t+1+bh+1

. Or, comme 0⩽t⩽h−1 , ( h
t+1)+(ht )=(h+1

t+1 )  donc 

(a+b)h+1=ah+1+∑
t=0

h−1

(h+1
t+1 )ah−t bt+1+bh+1

. On pose k=t+1  :

(a+b)h+1=ah+1+∑
k=1

h

(h+1
k )ah+1−k bk+bh+1

 donc P(h+1)  est vraie.

Conclusion : Pour tout n∈ℕ , (a+b)n=∑
k=0

n

(nk )an−k bk
.

Chapitre 6 – Nombres complexes, géométrie et formule du binôme : 31/49



Chapitre 7 – Calcul matriciel et 
applications

I – Nature d'une matrice et vocabulaire

a) Définitions

Définition     :   Soient m  et n  deux entiers naturels non nuls.
Une matrice de dimension m×n  est un tableau rectangulaire formé de m  lignes et n  
colonnes de nombres complexes.

Remarque     :   Quand on parle de dimension (ou taille, ou format) m×n , on ne calcule pas le produit !

Exemple     :   ( 2 2 3,5

0 − 1
8
3 )  est une matrice de 2 lignes et 3 colonnes, donc de taille 2×3 .

Définitions     :  
• Une matrice ligne est une matrice formée d'une seule ligne.
• Une matrice colonne est une matrice formée d'une seule colonne.
• Une matrice carrée d'ordre n  est une matrice n×n .

Exemples     :   ( 2 6 1 )  est une matrice ligne, ( 5
1
5 )  est une matrice colonne, ( 1 2 3 5

7 − 5 0 0
4 7 8 6
2 0 0 1

)  

est une matrice carrée d'ordre 4.

b) Écriture générale d'une matrice

Une matrice A  de taille m×n  (avec m∈ℕ*  et n∈ℕ* ) peut s'écrire sous cette forme :

A=( a1 1 a1 2 … a1n

… … … …
am −1, 1 am − 1,2 … am − 1,n

am ,1 am, 2 … am ,n
) .

Les nombres a i j  (notés parfois a i , j  pour éviter les ambiguïtés) avec {1⩽i⩽m
1⩽ j⩽n

 s'appellent les 

coefficients de la matrice A . On peut alors noter A=(a i j)1⩽i⩽m, 1⩽ j⩽n .
Le coefficient a i j  est donc le nombre placé à la i ième ligne et la j ième colonne.

Définition     :   Deux matrices seront égales si et seulement si elles ont le même format et ont les 
mêmes coefficients aux mêmes places.
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c) Matrices particulières

Définition     :   Dans une matrice carrée d'ordre n , les coefficients a1 1 , a2 2 , …, an n  forment la 
diagonale principale de la matrice.

Définition     :   Une matrice carrée est diagonale si et seulement si ses coefficients qui ne sont pas 
sur la diagonale principale sont tous nuls.

Exemple     :   ( 5 0 0
0 − 5 0
0 0 1 )  est une matrice diagonale.

Définition     :   La matrice unité d'ordre n  (ou matrice identité d'ordre n ), notée I n , est la 
matrice carrée d'ordre n  contenant uniquement des 1 sur sa diagonale principale et des 0 
ailleurs.

Exemple     :   I 2=( 1 0
0 1 ) .

Définition     :   La matrice nulle d'ordre n , notée On , est la matrice carrée d'ordre n  dont tous 
les coefficients sont nuls.

II – Opérations sur les matrices

a) Addition et multiplication par un complexe

Définition     :   Si A=(a i j)  et B=(bi j)  sont deux matrices de même taille m×n , leur somme 
A+B  est définie par A+B=(a i j+b i j)1⩽i⩽m , 1⩽ j⩽n .

On ne peut donc ajouter que des matrices de même taille, et pour cela on ajoute les 
coefficients situés à la même place.

Exemple     :   ( 2 4
− 1 10 )+( 3 − 4

6 5 )=( 2 + 3 4 − 4
− 1 + 6 10 + 5 )=( 5 0

5 15 ) .

Définition     :   Soit A=(a i j)1⩽i⩽m ,1⩽ j⩽n  une matrice et λ∈ℂ . La matrice λ A  est la matrice 
(λa i j)1⩽i⩽m , 1⩽ j⩽n . Multiplier une matrice par un complexe revient à multiplier tous les 
coefficients par ce complexe.

Remarques     :  
• On a de façon évidente A+B=B+A .
• Les règles de priorité sont les mêmes qu'avec les complexes : 2 A+3 B  désigne la matrice 

(2 A)+(3B) .
• Pour tous complexes λ  et μ , on a λ (μ A)=(λμ)A  et λ (A+B)=λ A+λ B .
• On peut désormais définir la différence de deux matrices A  et B  de même taille : 

A−B=A+(−1)B .
• Pour toute matrice carrée A  d'ordre n , on a A+O n=A .
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b) Multiplication d'une matrice ligne par une matrice colonne

Définition     :   Soit n  un entier naturel non nul.
Soient A=(a1 j)  une matrice ligne 1×n  et B=(bn1)  une matrice colonne n×1  (le nombre 
de colonnes de A  est donc égal au nombre de lignes de B ).

Alors A×B=( a1 1 a1 2 … a1 n)×(
b11

b21

…
bn1

)=a11×b11+a1 2×b2 1+ ...+a1 n×bn1 .

Remarque     :   On peut donc écrire A×B=∑
k=1

n

a1 k bk 1

Exemple     :   ( 2 − 3 1 )×(4
2
0 )=2×4+(−3)×2+1×0=2 .

c) Multiplication de deux matrices

Théorème     :   Le produit A B  de deux matrices A  et B  existe si et seulement si le nombre de 
colonnes de A  est égal au nombre de lignes de B .

Définition     :   Soient A  une matrice de taille m×n  et B  une matrice de taille n× p .
Le produit A×B  ou A B  est la matrice de taille m× p  dont le coefficient situé à la ligne i  
et la colonne j  est le coefficient du produit de la ligne i  de A  par la colonne j  de B  pour 
1⩽i⩽m  et 1⩽ j⩽p .

Exemples     :   
• Le produit d'une matrice 2×3  par une matrice 3×3  est une matrice 2×3   :

( 1 2 − 2
5 0 2 )×( 1 2 0

− 1 − 1 2
2 0 2 )=

(1×1 + 2×(− 1) + (− 2)×2 1×2 + 2×(− 1) + (− 2)×0 1×0 + 2×2 + (− 2)×2
5×1 + 0×(− 1) + 2×2 5×2 + 0×(− 1) + 2×0 5×0 + 0×2 + 2×2 )

=(− 5 0 0
9 10 4 ) .

• Le produit de deux matrices 2×2  est une matrice 2×2   : On peut au brouillon adopter 
cette présentation. De plus, on ne détaille pas le calcul des sommes : 

              
× ( 0 3

4 2 )
( 1 2

3 5 )  ( 8 7
20 19 )  

(le coefficient de la deuxième ligne, première colonne du produit est le produit de la 
deuxième ligne de la première matrice par la première colonne de la deuxième matrice : 
3×0+5×4=20 ).
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Propriétés admises     :   Soient A , B , C  des matrices carrées d'ordre n∈ℕ* .
• Associativité : (A×B)×C=A×(B×C ) . Ce produit se note A×B×C  ou A B C .
• Distributivité : A×(B+C )=A B+AC  et (A+B)×C=AC+BC .
• Produit par un complexe λ  : (λ A)×B=λ A B  et A×(λ B)=λ A B .
• Soit I n  la matrice unité d'ordre n  alors  I n×A=A  et A× I n=A .

Remarque     :   La multiplication de matrices n'est pas commutative : en général, A×B≠B×A  (le 
produit A B  peut même exister, alors que B A  n'existe pas).

Exemple     :   Soient A=( 1 2
− 2 3 )  et B=( 2 2

− 1 0 ) .

On a A B=( 0 2
− 7 − 4 )  mais B A=( − 2 10

− 1 − 2 )  donc A B≠B A .

Remarque     :   Soient A , B  et C  des matrices carrées d'ordre n∈ℕ* .
Si A B=AC , on ne peut pas en déduire que B=C  (on ne peut pas « simplifier » par A ).

Exemple     :   ( 2 1
4 2 )×( 4 −2

2 1 )=( 10 −3
20 −6 )  et ( 2 1

4 2)×( 5 −5
0 7 )=( 10 −3

20 −6) .

Remarque     :   Soient A  et B  deux matrices carrées d'ordre n∈ℕ* .
Si A B=O n , on ne peut pas en déduire que A=O n  ou B=On  (on ne peut pas, comme pour les 
nombres, utiliser le théorème de l'équation produit nul).

Exemple     :   ( 2 1
4 2)×( 1 −3

−2 6 )=( 0 0
0 0) .

d) Puissances entières positives de matrices

Définition     :   Soit A  une matrice carrée d'ordre n∈ℕ* , on notera A2=A×A , A3=A×A×A , 
etc. Plus généralement, pour k∈ℕ* , Ak  sera le produit de k  matrices toutes égales à A .
Par convention, on posera A0=I n .

Exemple     :   Soit A=(1 4
0 1) . On a donc A 2=A×A=(1 8

0 1) , A 3=A2×A=(1 12
0 1 ) , 

A4=A2×A2=(1 16
0 1 ) .

On peut démontrer par récurrence que pour tout n∈ℕ , An=(1 4 n
0 1 ) .
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III – Matrices inversibles et application aux systèmes 
linéaires

a) Matrices inversibles

Définition     et propriété :   Soit A  une matrice carrée d'ordre n∈ℕ* .
On dit que A  est inversible si et seulement si il existe une matrice carrée d'ordre n , notée 
A−1  telle que A×A−1=A−1×A=I n .

La matrice A−1  est nécessairement unique, et appelée matrice inverse de A .

Exemple     :   ( 1 −0,5
−2 1,5 )×(3 1

4 2)=(1 0
0 1)  et ( 3 1

4 2)×( 1 −0,5
−2 1,5 )=( 1 0

0 1) . La matrice 

( 1 −0,5
−2 1,5 )  est donc inversible et son inverse est ( 3 1

4 2) .

Preuve de l'unicité     :   Supposons que A  possède deux inverses, notés B  et B ' .
On a donc A B= I n , A B '=I n , B A= I n , B ' A=I n . On peut donc écrire : 
B ' (A B)=B ' I n=B ' . On a aussi (B ' A)B=I n B=B . Comme B ' (A B)=(B ' A)B , on a B '=B .

b) Matrices inversibles d'ordre 2

Définition     :   Soit A  une matrice carrée d'ordre 2. On a donc A=( a b
c d ) . Le complexe 

a d−b c  est appelé déterminant de la matrice A , est noté det ( A)  ou Δ . On note aussi, pour 

le calcul, det ( A)=|a b
c d| .

Exemple     :   Pour ( 3 1
4 2) , on a  Δ=|3 1

4 2|=3×2−1×4=2 .

Théorème     :   Soit A=( a b
c d )  une matrice carrée d'ordre 2. Alors :

• Si Δ≠0 , A  est inversible ; on a A−1= 1
Δ ( d −b

−c a ) .

• Si Δ=0 , A  n'est pas inversible.

Preuve     :   

• Si Δ≠0 , 1
Δ

 existe. Soit B= 1
Δ ( d −b

−c a ) . On a alors 

A B= 1
a d −bc ( a b

c d )×( d −b
−c a )= 1

a d−b c ( a d – bc 0
0 a d –b c)=( 1 0

0 1)=I 2 .

De même, on vérifie que l'on a aussi B A= I 2  donc B  est l'inverse de A .
• Si Δ=0 , démontrons par l'absurde que A  n'est par inversible : on suppose que A  admet 

une inverse A ' . Soit B=(−c a
−c a) .
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On a B(A A' )=B I 2=B  et (B A)A'=((−c a
−c a)×( a b

c d ))×A'=( 0 a d – b c
0 a d−b c)×A'=O 2  

car a d−b c=0 .
Comme B(A A' )=(B A) A' , on en déduit que B=O2  et donc c=a=0 .

De même, soit C=( d −b
d −b) .

On a C (A A ')=C I 2=C  et (C A) A'=(( d −b
d −b)×( a b

c d ))×A '=( a d−bc 0
ad – bc 0)×A '=O2  

car a d−b c=0 .
Comme C (A A ')=(C A)A' , on en déduit que C=O 2  et donc b=d=0 .
On en déduit que A=O 2 , ce qui est absurde puisque O2  n'est pas inversible – son produit 
par n'importe quelle matrice carrée d'ordre 2 valant toujours O2 , il ne peut égaler I 2 .
Donc A  n'est pas inversible.

Exemple     :   Soit A=( 1 3
5 6 ) . Δ=1×6−5×3=−9  donc A  est inversible.

On a alors A−1= 1
−9 ( 6 −3

−5 1 )=(−2
3

1
3

5
9

−1
9
) .

c) Application aux systèmes linéaires

Exemple     :   On considère le système linéaire d'inconnues x1 , x2 , x3  suivant :

{2 x1−3 x2+4 x3=−1
x1+ x2−5 x3= 2
−4 x1+3 x2= 6

. On remarque qu'il peut s'écrire ( 2 −3 4
1 1 −5
−4 3 0 )×( x1

x2

x3
)=(−1

2
6 ) .

On a alors A X =Y  avec A=( 2 −3 4
1 1 −5

−4 3 0 ) , X =( x1

x2

x3
)  et Y =(−1

2
6 ) .

L'inconnue est alors la matrice colonne X .

Théorème     :   Un système linéaire à n  inconnues x1 , x2 , …, x n  :

{ a1 1 x1+a1 2 x2+…+a1 ,n xn= y1

a2 1 x1+a2 2 x2+…+a2 ,n xn= y2

…
an ,1 x1+an , 2 x2+…+an ,n xn= y n

 peut s'écrire sous la forme A X=Y , où A=(a i j)1⩽i⩽n ,1⩽ j⩽n  

est une matrice carrée d'ordre n , X=( x i )  et Y=( y i )  sont des matrices colonnes n×1 .
Si A  est inversible, le système a alors une solution unique : X=A−1 Y .

Preuve     :   Si A  est inversible, de A X =Y  on déduit A−1(A X )=A−1 Y  d'où (A−1 A) X =A−1Y  par 
associativité. On a donc X =A−1Y .
Réciproquement, si X =A−1Y , alors A X =A A−1Y =I nY =Y .

A−1Y  est donc l'unique solution du système écrit sous forme matricielle.
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IV – Matrices et transformations du plan

Le plan est muni d’un repère orthonormé direct (0 ; i⃗ , j⃗) .

a , b , c  et d  sont quatre nombres réels.

Définition     :   Une translation de vecteur t⃗ ( a
b) , qui à tout point M ( x ; y )  du plan associe son 

point image M '( x '; y ')  tel que M⃗M '= t⃗  se définit matriciellement comme la somme des 

matrices colonnes ( x '
y ')=( x

y)+( a
b) .

Propriété admise     :   Pour les transformations géométriques planes suivantes, on définit la 

matrice de transformation T=( a b
c d )  qui, à tout point M ( x ; y )  du plan, associe son point 

image M '( x '; y ')  tel que ( x '
y ')=T×( x

y )  :

• pour une symétrie axiale par rapport à l’axe des abscisses, T=( 1 0
0 −1)  ;

• pour une symétrie axiale par rapport à l’axe des ordonnées, T=(−1 0
0 1)  ;

• pour une rotation de centre O  et d’angle θ , T=( cos(θ) −sin(θ)
sin (θ) cos(θ) )  ; 

• pour une homothétie de centre O  et de rapport k∈ℝ , T=k I2 .

Exemple     :   La matrice associée à la rotation de centre O  et d’angle 
π
3

 est ( 1
2

−√ 3
2

√3
2

1
2

) .
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V – Graphes

a) Définitions

Définitions     :   Un graphe est une représentation composée de sommets (des points) reliés par des 
arêtes (segments).

Un graphe orienté est un graphe dont les arêtes sont munies d’un sens de parcours.

L’ordre d’un graphe est le nombre de sommets de ce graphe.

Le degré d’un sommet est le nombre d’arêtes incidentes à ce sommet, sans tenir compte de 
leur éventuel sens de parcours.

Deux sommets sont adjacents lorsqu’ils sont reliés par au moins une arête.

Un graphe est complet lorsque tous ses sommets sont deux-à-deux adjacents.

Exemple     :   

Le graphe ci-contre est d’ordre 7.

Il n’est pas orienté.

B  est de degré 3.

A  et G  ne sont pas adjacents,  
donc le graphe ne peut être complet.

Théorème     :   Un graphe complet d’ordre n  possède :

• n(n−1)  arêtes s’il est orienté ;

• n(n−1)
2

 arêtes s’il est non orienté.

Preuve     :  

• S’il est orienté, comme tous les sommets sont adjacents, une arrête est définie par un couple 
ordonnée (a ;b)  de sommets. Il y a donc n  possibilités pour le sommet a , et n−1  pour le 
sommet b . Le nombre d’arêtes est n×(n−1) .

• S’il est non orienté, par rapport à la situation précédente, il y a deux fois moins d’arêtes, car 
les couples (a ;b)  et (b ;a)  correspondent à une même arête. Le nombre d’arêtes est donc 
n×(n−1)

2
=(n

2) .
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Définitions : Pour un graphe non orienté, une chaîne est une suite d’arêtes consécutives reliant 
deux sommets (éventuellement confondus).

La longueur d’une chaîne est le nombre d’arêtes la composant.

Pour un graphe orienté, un chemin est une suite d’arêtes consécutives reliant deux sommets 
(éventuellement confondus) en tenant compte du sens de parcours des arêtes.

Un graphe non orienté est connexe lorsque chaque couple de ses sommets peut-être relié par 
une chaîne.

Exemple     :   Avec le graphe orienté ci-dessous, le chemin A – B – C – D – A  est de longueur 4.

Exemple     :   Le graphe ci-dessous n’est pas connexe, puisque A  et B  ne sont pas reliés par une 
chaîne.
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b) Calcul matriciel et graphes

Définition     :   Soit n  un entier naturel non nul. On considère un graphe d’ordre n  
(éventuellement orienté) dont les sommets sont numérotés de 1 à n  et rangés dans l’ordre 
croissant.

La matrice d’adjacence de ce graphe est la matricée carrée d’ordre n , notée M , dont le 
coefficient mi j  est égal au nombre d’arêtes partant du sommet i  pour arriver au sommet j .

Remarques     :   La matrice d’un graphe non orienté est symétrique. La matrice d’un graphe comporte 
des zéros sur sa diagonale, les autres coefficients étant des 1 ou des 0.

Exemple     :   Pour le graphe ci-dessous, la matrice d’adjacence M  est  : M=(
0 0 1 1 0 0
0 0 0 1 1 0
1 0 0 0 0 1
1 1 0 0 1 0
0 1 0 1 0 0
0 0 1 0 0 0

) .

Propriété     :   Soient n  et k  deux entiers naturels non nuls et M  la matrice d’adjacence d’un 
graphe d’ordre n  (orienté ou non), dont les sommets sont numérotés de 1 à n  et rangés dans 
l’ordre croissant. Alors, le terme de la i -ème ligne et de la j -ième colonne de la matrice M k  
donne le nombre de chaînes (ou de chemins) de longueur k  reliant le sommet i  au sommet 
j .
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Preuve     :   On démontre le résultat par récurrence sur k . Soit P(k )  l’hypothèse « Pour tout 
i∈⟦1 ;n⟧  et pour tout j∈⟦1 ;n⟧ , le coefficient ai j  de la matrice M k  est le nombre de chaînes ou 
chemins de longueur k  reliant le sommet i  au sommet j  ».

Initialisation     :   Si k=1 , M k=M  et pour tout i∈⟦1 ;n⟧  et pour tout j∈⟦1 ;n⟧ , mi j=1  si i  est 
relié à j  et 0 sinon. mi j  est alors le nombre de chemins ou chaînes de longueur 1. P(1)  est donc 
vraie.

Hérédité     :   On suppose que P(k )  est vraie pour un certain k . En notant M k=(ai j),⩽i⩽n , 1⩽ j⩽n , on a 
donc que ai j  est le nombre de chaînes ou chemins de longueur k  reliant i  à j .

On note M k+1=(bi j)1⩽i⩽n ,1⩽ j⩽n . Comme M k+1=M k×M , on a donc pour tout i∈⟦1 ;n⟧  et pour 

tout j∈⟦1 ;n⟧  bi j=∑
c=1

n

a i c mc j , où ai c  donne le nombre de chaînes de longueur k  reliant les 

sommets i  et c , et mc j  donne le nombre de chaînes de longueur 1 reliant les sommets c  et j .

Pour tout c∈⟦1; n⟧ , mc j  vaut 1 si les sommets c  et j  sont adjacents et 0 sinon.

Ainsi, ai c×mc j  vaut ai c  si les sommets c  et j  sont adjacents et 0 sinon.

Cela correspond donc au nombre de chaînes ou chemins de longueur k+1  reliant le sommet i  au 
sommet j  pour lesquelles la dernière arête relie le sommet c  au sommet j .

Ainsi, bi j=∑
c=1

n

a i c mc j  correspond au nombre de chaînes de longueur k+1  reliant le sommet i  au 

sommet j , en considérant toutes les possibilités pour l’avant-dernier sommet.

Conclusion     :   Pour tout k  entier naturel non nul, le coefficient ai j  de la matrice M k  est le nombre 
de chaînes ou chemins de longueur k  reliant le sommet i  au sommet j .

Exemple : Avec l’exemple précédent, on a M 5=(
2 7 10 17 7 0
7 12 6 18 13 1

10 6 0 2 6 5
17 18 2 14 18 5
7 13 6 18 12 1
0 1 5 5 1 0

) . Comme a2 3=6 , il y 

a 6 chaînes de longueur 5 reliant B  à C . Comme a16=0 , il n’y a aucune chaîne de longueur 5 
reliant A  à F .
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Chapitre 8 – Suites et matrices

I – Suites de matrices colonnes

Dans cette partie, U n  est une matrice colonne à m  lignes, A  une matrice carrée d'ordre m  et 
B  une matrice colonne à m  lignes, avec m∈ℕ* .

On note (R)  la relation U n+1=A U n+B .

a) Expression du terme général

Une suite constante égale à C  vérifie la relation (R)  si et seulement si C=A C+B .
Dans ce cas, en posant Xn=U n−C  on a Xn+1=U n+1−C=A U n+B−(A C+B)=A(U n−C)=A Xn .

Théorème     :   La suite (Xn)n∈ℕ  définie par Xn=U n−C  vérifie Xn+1= A Xn  et donc pour 
n∈ℕ , Xn=An X0 , c'est-à-dire Un=An (U 0−C)+C .

Preuve     :   On utilise le fait que (Xn)n∈ℕ  est géométrique de raison A .

b) Limite d'une suite de matrices

Une suite de matrices (U n)n∈ℕ  (toutes de même format) converge vers la matrice L  si les 
coefficients de U n  convergent vers les coefficients de L  correspondants.
En pratique, on exprime chaque coefficient en fonction de n , et on cherche la limite de chaque 
coefficient.

Remarque     :   Si U n=AnU 0  et si lim
n→+∞

An=L , alors lim
n→+∞

U n=LU 0 .

II – Puissances d'une matrice

On rappelle que pour A  matrice carrée d'ordre n∈ℕ*  et pour k ∈ℕ* , Ak  sera le produit de k  
matrices toutes égales à A , et que A0=I n .

a) Cas des matrices diagonales

Propriété     :   Soit D  une matrice diagonale. Pour tout n∈ℕ* , Dn  est la matrice diagonale 
obtenue en élevant à la puissance n  tous les coefficients de D .

Remarque     :   Ce résultat se démontre par récurrence.

Exemple     :   Si D=( 5 0
0 − 1 ) , alors D4=( 54 0

0 (− 1)4 )=( 625 0
0 1 ) .
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b) Cas des matrices triangulaires

Définition     :   Une matrice carrée est dite :
• triangulaire supérieure (respectivement inférieure) si tous ses éléments situés en-

dessous (respectivement au-dessus) de sa diagonale sont nuls ;
• strictement triangulaire si elle est triangulaire avec des coefficients diagonaux nuls.

Exemples     :   ( 1 0 0
− 3 − 5 0
5 0 2 )  est triangulaire inférieure, ( 0 2 − 6

0 0 56
0 0 0 )  est strictement 

triangulaire supérieure.

Propriétés     :   Les puissances d'une matrice triangulaire sont triangulaires de même forme.
Les puissances d'une matrice strictement triangulaire d'ordre n  sont nulles à partir de 
l'exposant n .

Preuve     :   On traitera le cas n=3 , pour M  matrice strictement triangulaire supérieure :

Si M=( 0 a b
0 0 c
0 0 0 ) , on a M 2=( 0 0 a c

0 0 0
0 0 0 ) , M 3=O3 . On en déduit que pour n⩾3 , M n=O 3 .

Définition     :   Une matrice carrée dont une puissance est nulle est dite nilpotente. Le plus petit 
entier k  pour lequel la puissance de la matrice est nulle est appelé indice de nilpotence.
On déduit de la propriété précédente que si M  d'ordre n  est strictement triangulaire, son 
indice de nilpotence est inférieur ou égal à n .

Remarque     :   Ces propriétés permettent de calculer des puissances d'une matrice en la décomposant 
en somme de matrices particulières ou en effectuant des calculs par blocs.

III – Diagonalisation d'une matrice carrée

Définition     :   Une matrice carrée A  est dite diagonalisable s'il existe une matrice carrée P  
inversible et une matrice diagonale D  telles que A=P D P−1 .

Théorème     :   Si A=P D P−1 , pour tout n∈ℕ , An=P Dn P−1 .

Preuve     :   On raisonne par récurrence sur n∈ℕ . Soit k  l’ordre de A .
Soit P (n)  la propriété An=P D n P−1 .

• Initialisation     :   Pour n=0 , A0=I k  et P D 0 P−1=P I k P−1=P P−1=I k . P (0)  est vraie.
• Hérédité     :   On suppose P (n)  vraie. On a donc An=P D n P−1 .

An+1=A An=P D P−1 P Dn P−1=P D Dn P−1=P Dn+1 P−1 . P (n+1)  est vraie.
• Conclusion     :   Pour n∈ℕ , An=P D n P−1
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IV – Chaînes de Markov

a) Vocabulaire

Définitions     :   
• Un processus est une suite (Xn)  de variables aléatoires à valeurs dans un même 

ensemble E  appelé ensemble des états. Les éléments de E  sont appelés états.
• Pour tout état i∈E  et tout n∈ℕ , dire que le processus est dans l’état i  à l’instant n  

signifie que l’évènement { Xn=i }  est réalisé.

Définition d’une chaîne de Markov     :   Une chaîne de Markov sur un espace d’états E  est un 
processus (Xn)  tel que :

• Pour tout état i∈E , l’évènement { Xn+1=i }  ne dépend que de l’état dans lequel était le 
processus à l’instant n  (« le futur ne dépend que de l’instant présent »).

• La probabilité de passer de l’état i  à l’état j  ne dépend pas de l’instant n .

Exemple     :   Dans un certain pays, s’il pleut un certain jour, alors il pleut également le lendemain 
avec une probabilité égale à 0,7. De plus, s’il ne pleut pas un certain jour alors il pleut le 
lendemain avec une probabilité égale à 0,2.
On choisit au hasard une journée. Xn  est la variable aléatoire qui prend la valeur 1 s’il pleut 
après n  jours et 2 sinon. 
Comme le fait qu’il pleuve une journée ne dépend que du temps de la journée précédente et que la 
probabilité que le temps change ou non ne dépend pas du rang de la journée, on en déduit que la 
suite (Xn)  est une chaîne de Markov à deux états 1 et 2.

b) Graphe et matrice de transition d’une chaîne de Markov

Définitions     :   
• Un graphe pondéré est un graphe dans lequel chaque arête est affectée d’un nombre réel 

positif appelé poids de cette arête.
• Un graphe probabiliste est un graphe orienté pondéré par des réels appartenant à [0 ;1 ]  et 

dans lequel la somme des poids des arêtes issues de chaque sommet est égale à 1.

On associe à une chaîne de Markov le graphe dont les sommets sont les états et dont l’arrête 
orientée reliant l’état i  à l’état j  est pondérée par la probabilité de passer de l’état i  à l’état 
j . Par construction, c’est un graphe probabiliste.

Exemple     :   Avec l’exemple précédent, le graphe associé est le suivant :
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On associe à une chaîne de Markov dont k  est le nombre d’états la matrice de transition 
P=( p i j)1⩽ i⩽ k

1⩽ j⩽ k
 telle que pi j  est la probabilité de passer de l’état i  à j . On a donc 

pi j=P( Xn=i) (Xn+1= j)  pour tous 1⩽i⩽k , 1⩽ j⩽ k  et n∈ℕ .

Exemple     :   Avec l’exemple précédent, on a P=(0,7 0,3
0,2 0,8) .

Remarque     :   Les évènements {Xn= j }  avec 1⩽ j⩽k  formant une partition de l’univers Ω  ( y 

compris en les conditionnant par un évènement {Xn=i } ), on en déduit que la somme des 
coefficients de chaque ligne de la matrice égale 1. 

V – Distributions d’une chaîne de Markov

Dans ce paragraphe, (Xn)  est une chaîne de Markov de matrice de transition P .

a) Distribution après plusieurs transitions

Propriété     :   Pour tous états i  et j , et tout entier naturel n⩾ 1 , le coefficient en ligne i  et 
colonne j  de la matrice Pn  est la probabilité de passer de l’état i  à l’état j  en n  
transitions.

Preuve par récurrence     :   On se place dans le cas d’une chaîne de Markov à deux états notés 1 et 2. Le 
cas général est analogue.

Soient p  la probabilité de passer de l’état 1 à 1 et q  celle de passer de 2 à 2. On a donc 0⩽p⩽1  
et 0⩽q⩽1  et nécessairement, le graphe associé est le suivant :

La matrice de transition associée est P=( p 1−p
1−q q ) .

Pour tout entier n⩾1 , on note Q(n)  la propriété « Pour tous états i  et j , le coefficient (Pn)i j  est 
la probabilité de passer de l’état i  à l’état j  en n  transitions ».

Initialisation     :   Par définition de la matrice P , le coefficient (P1)i j  est la probabilité de passer de 
l’état i  à l’état j  en une transition, donc Q(1)  est vraie.
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Hérédité     :   On suppose que pour un entier n⩾1 , Q(n)  est vraie. On a donc Pn=( αn 1−αn

1−βn βn
)⇒

 Pn+1=Pn×P=( αn 1−αn

1−βn βn
)×( p 1−p

1−q q )=(αn p+(1−αn)(1−q) αn(1−p)+(1−αn)q
(1−βn) p+βn(1−q) (1−βn)(1−p)+βn q ) .

Avec l’arbre ci-dessus et la formules des probabilités totales, on peut constater que pour tous états i  
et j , le coefficient (Pn+1)i j  est la probabilité de passer de l’état i  à l’état j  en n+1  transitions, 
donc Q(n+1)  est vraie.

Conclusion     :   Pour tous états i  et j  et tout entier n⩾1 , le coefficient (Pn)i j  est la probabilité de 
passer de l’état i  à l’état j  en n  transitions.

Exemple     :   Avec l’exemple précédent, on a P5=(0,41875 0,58125
0,3875 0,6125 ) . On en déduit notamment que 

la probabilité de passer de l’état 2 à l’état 1 en 5 transitions (et donc d’une journée non pluvieuse à  
une journée pluvieuse cinq jours plus tard) est égale à 0,3875.

Définition     :   La distribution initiale, notée π0 , est la loi de probabilité de la variable aléatoire 
X0 . La distribution après n  transitions, notée πn , est celle de la variable aléatoire Xn . Elles 

sont représentées par des matrices lignes.

Propriété     :   π0  étant la distribution initiale d’une chaîne de Markov, alors pour tout n∈ℕ , la 
distribution πn  après n  transitions vérifie πn=π0 Pn  et πn+1=πn×P .
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Preuve     :   Les propriétés sont évidentes pour n=0 . Pour n⩾1 , on reprend les notations de la preuve 

précédente. Soit πn=(an bn ) . Comme Pn=( αn 1−αn

1−βn βn
) , on considère l’arbre ci-dessous.

On peut affirmer avec les probabilités totales que {an=a0αn+b0(1−βn)
bn=a0(1−αn)+b0βn

. Ainsi, pour tout n⩾1 , 

πn=Pn π0 .

Donc, pour tout entier naturel n , πn+1=π0×Pn+1=π0×Pn×P=πn×P .

b) Distributions invariantes

Définition     :   Soit P  la matrice de transition associée à une chaîne de Markov. π  est une 
distribution invariante de la chaîne de Markov si et seulement si π=π×P .

Exemple     :   Avec l’exemple précédent, on remarque que 

(0,4 0,6 )×P= (0,4 0,6 )×(0,7 0,3
0,2 0,8 )=(0,4 0,6 )  donc π=(0,4 0,6 )  est une distribution 

invariante de la chaîne de Markov. Ceci signifie que si un jour la probabilité de pluie est de 40 %, 
cette probabilité sera la même tous les jours suivants.

Propriété admise     :   Soit P  la matrice de transition associée à une chaîne de Markov de 
distribution initiale π0 .
S’il existe un entier naturel k⩾ 1  tel que Pk  ne comporte pas de zéro, alors la suite (πn)  
converge vers une distribution π  invariante et indépendante de π0 .
De plus, dans ce cas π  est l’unique distribution invariante de cette chaîne de Markov.
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Exemple : Avec l’exemple précédent, comme P=(0,7 0,3
0,2 0,8)  ne comporte pas de zéro, alors la suite  

(πn)  converge vers l’unique distribution invariante de cette chaîne. On utilise deux méthodes.
• Première méthode : Avec la relation π=π×P

π=( x y )  avec x+ y=1  est invariante signifie que π P=π . On a donc :

( x y )(0,7 0,3
0,2 0,8)=( x y )⇔ {0,7 x+0,2 y=x

0,3 x+0,8 y= y
⇔{−0,3 x+0,2 y=0

0,3 x−0,2 y=0
⇔−0,3 x+0,2 y=0  car 

les deux équations sont équivalentes. Or x+ y=1  donc on résout {−0,3 x+0,2 y=0
x+ y=1

⇔

{ x=2
3

y

2
3

y+ y=1
⇔ {x=0,4

y=0,6
. On a donc π=(0,4 0,6 ) .

• Deuxième méthode : Avec l’étude de la distribution πn

On note π n=(an bn )  avec an+bn=1  la distribution après n  transitions.
On a donc pour tout n∈ℕ  an+1=0,7 an+0,2 bn⇔an+1=0,7 an+0,2 (1−an)⇔
an+1=0,5 an+0,2 . On étudie ensuite cette suite arithmético-géométrique (détermination du 
point fixe, utilisation d’une suite auxiliaire géométrique et justification de la convergence de  
celle-ci) et on obtient que lim

n→+∞
an=0,4  donc π=(0,4 0,6 ) .
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